Skip to main content

Rise opens 6G proving ground in Sweden

AstaZero will test communications between vehicles and infrastructure
By David Arminas June 10, 2025 Read time: 2 mins
Telecom providers, AI engineers and vehicle manufacturers around the world can work together at AstaZero (image: AstaZero)

Rise (Research Institutes of Sweden) has unveiled a 6G edge-computing facility with end-to-end vehicle and infrastructure testing facilities. 

Telecom providers, AI engineers and vehicle manufacturers around the world can work together at AstaZero, the world’s first full-scale independent test environment for automated transport system and mobility connectivity. 

This includes component reliability tests in electromagnetic chambers to repeatable functionality tests at the AstaZero proving ground, where systems can be tested in a safe, realistic environment.

Rise says that, as international 3G networks are decommissioned, traffic, business and mission-critical systems, such as police, ambulances and fire brigades, face the challenge of upgrading and adapting their systems to ensure seamless integration with 6G infrastructure and technologies. 

AstaZero is now launching a system that enables communication reliability between vehicles to reach 99.999%, marking the biggest breakthrough in vehicle testing for a generation, according to the Swedish researchers.   

The next generation of critical communication (V2X) scenarios will unlock the full potential of this ecosystem and allow vehicles – both AI-enabled and non-AI-enabled – to interact within edge networks. 

To reach the required level of reliability will require tests at the individual sensor level - but also on integrated and collaborative systems, a task which has been impossible until now.

This is a critical step forward in the journey for autonomous vehicles, industrial automation and connected societies, as it allows virtual objects and situations to be tested in scenarios limited solely by the engineer’s imagination and vehicle technology.

“In the future, communication might not always originate from the sensors on the vehicle itself, but instead from sensors mounted on connected infrastructure or from the sensors of another vehicle,” said Peter Janevik, CEO, Rise AstaZero.

“In these types of systems, three key factors are crucial: reliability, ultra-fast communication and intelligent decision-making. However, the bitter truth is that without a global, harmonious and integrated testing approach, there is no guarantee that vehicles and infrastructure will have the capabilities to enable the highest level of safety with complete confidence within this connected ecosystem.”

Related Content

  • Making sense of it all with NEC
    September 18, 2024
    Vehicle-type and traffic-volume data collection in real-time and predictive congestion planning for road agencies just got easier with new optical fiber sensing technology from NEC.
  • New technology revolution in urban traffic control?
    January 26, 2012
    Urban traffic control is a well-defined and practised art. Nevertheless, there are technologies here and on the horizon with the potential to revolutionise how we do things. By Gavin Jackman and Andrew Kirkham, TRL, and Jason Barnes. Distributed monitoring and control of urban traffic networks and flows is nothing new. PC-based Urban Traffic Control (UTC) is now well established and operating in many locations around the world. However, it is worth considering the effects of the huge growth in the use of sm
  • Demonstration of first German A9 motorway safety project
    November 10, 2015
    In the first project of the ‘digital A9 motorway test bed’ to show how vehicles on a motorway can share hazard information, Continental, Deutsche Telekom, Fraunhofer ESK and Nokia Networks have carried out a real-time demonstration of communication between vehicles via the Deutsche Telecom LTE cell network. The project, which aims to improve road safety and traffic management, involved upgrading Deutsche Telekom's existing LTE network at sections of the A9 motorway test bed with Nokia Networks’ mobile e
  • Xerox video enforcement deters stopped-bus overtaking
    November 7, 2012
    High resolution cameras, video motion detection and modems are being fitted to school buses in Maryland, as part of a system designed to enforce and deter stopped-bus overtaking violations. A new video enforcement system is being installed to record drivers illegally overtaking school buses in Frederick County, Maryland. It is against the law to overtake a parked school bus that is loading or unloading students, yet a 2011 survey for the Maryland Department of Education found 7,000 cases of drivers illegall