Skip to main content

Positive results for Ritherdon’s roadside cabinet

The latest roadside cabinet developed by Ritherdon is said by the company to be the world’s first passive roadside cabinet. To ensure that the product performed as specified in EN 12767, two full-scale crash-tests were carried out on the product. The tests examine two parameters to define the safety level of the vehicle occupants at the time of impact: acceleration severity index (ASI) and theoretical head impact velocity (THIV). The car was crashed into the passively safe cabinet at 35km/h and 100 km
April 9, 2014 Read time: 2 mins
The latest roadside cabinet developed by 7715 Ritherdon is said by the company to be the world’s first passive roadside cabinet.  To ensure that the product performed as specified in EN 12767, two full-scale crash-tests were carried out on the product.

The tests examine two parameters to define the safety level of the vehicle occupants at the time of impact:  acceleration severity index (ASI) and theoretical head impact velocity (THIV).  The car was crashed into the passively safe cabinet at 35km/h and 100 km/h to check it behaved as expected at low and high speeds. In both cases, the cabinet detached as expected from its ground fixings when impacted.  Ritherdon Poleplug connectors ensured full electrical and data cable disconnection was also achieved upon impact.

Although the vehicles were damaged following each test, they remained upright with no significant deviation from their original approach path. The steering mechanism of the vehicles remained fully functional and there was no damage to the windscreens. Most importantly, there was no damage to, or penetration of, the vehicle passenger compartments.

The cabinet’s performance during these tests demonstrated that it met EN 12767 standard, which defines passive safety levels intended to reduce the severity of injury to occupants inside a vehicle in the event of an impact with a permanent road side structure.

For more information on companies in this article

Related Content

  • Delivering accurate vehicle identification
    August 1, 2012
    In the Netherlands, TNO, the independent research organisation, has been engaged in a project on behalf of the RDW, the Dutch vehicle registration and licensing authority, intended to look at the feasibility of using electronic means to make vehicle identification more accurate and less susceptible to fraud. Electronic Vehicle Identification (EVI) has been in existence in various forms for several years now but TNO was tasked with finding out whether OnBoard Unit (OBU)-based applications could be complement
  • Idaho adds human dimension to winter savings
    September 23, 2014
    Idaho leverages the increased capability and reliability of its road weather sensor network to reduce costs and prevent accidents. Weather-related accidents can form a significant chunk of an authorities’ annual road casualty statistics. While authorities cannot control the weather, the technology exists to monitor the road conditions and react with warnings to motorists and the treatment of icy or snow-covered roads. However, with all capital expenditure now placed under the microscope of public scrutiny,
  • Intersection collision avoidance system trial
    January 31, 2012
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.
  • Machine vision - cameras for intelligent traffic management
    January 25, 2012
    For some, machine vision is the coming technology. For others, it’s already here. Although it remains a relative newcomer to the ITS sector, its effects look set to be profound and far-reaching. Encapsulating in just a few short words the distinguishing features of complex technologies and their operating concepts can sometimes be difficult. Often, it is the most subtle of nuances which are both the most important and yet also the most easily lost. Happily, in the case of machine vision this isn’t the case: