Skip to main content

NXP Delivers V2X Chipset for Mass-Production Secure Connected Cars

NXP Semiconductors RoadLINK V2X chipsets – for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication – will be put into highvolume manufacturing for Delphi Automotive. Having secured a partnership with a leading global automaker, Delphi’s platform is expected to be first to market and on the roads in as little as two years.
June 3, 2015 Read time: 2 mins

566 NXP Semiconductors RoadLINK V2X chipsets – for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication – will be put into highvolume manufacturing for 7207 Delphi Automotive. Having secured a partnership with a leading global automaker, Delphi’s platform is expected to be first to market and on the roads in as little as two years.

The wireless technology significantly improves road safety by alerting drivers of critical traffic information. Using NXP’s technology combined with application software from 6667 Cohda Wireless, Delphi’s platform allows alerts to be delivered to vehicles from other cars and surrounding infrastructure such as traffic lights and signage. This alerts drivers about potentially hazardous traffic situations even beyond the line of sight, optimally complementing Advanced Driver Assistance Systems (ADAS) like radar.

Messages could include blind-intersection collision, road condition hazards, road works, presence of emergency vehicles, stationary or slow moving vehicles, traffic jam and accident warnings, as well as traffic signals or signage indicators.

The solution avoids cellular or other networks that can be slow or unreliable. Instead operations on IEEE 802.11p, a wireless communication standard for the automotive industry, and directly connects surrounding infrastructure and vehicles to each other to achieve immediate transmission and ensure reliable road safety communications.

For more information on companies in this article

Related Content

  • Safelane automates work zone perimeter guarding
    June 12, 2015
    The safety of workers during road closures and working alongside, or above, live lanes is becoming an automated process. Ten workers suffered major injuries while working on or near motorways and major A roads in England in 2013, and between 2009 and 2013 eight had been killed. It was against that background that the first commercial application Safelane, the automated traffic management system designed to detect work zone incursions, was carried out during the temporary closure of a motorway.
  • Flir to showcase dual vision and C-ITS technology
    February 16, 2018
    Flir ITS will use Intertraffic Amsterdam 2018 to showcase Dual Vision Technology (DVT), combining best-in-class thermal imaging detection and HD visual imaging to provide a complete traffic monitoring solution for road and tunnel operators. Moreover, DVT has the exceptional functionality of detecting fire at an early stage, together with see-through-smoke capabilities. Flir’s C-ITS technology promises major benefits in mobility applications, such as traffic signal priority for public transport and
  • Future traffic management needs new thinking, new technology
    January 23, 2012
    One of the biggest problems facing US ITS professionals, says Georgia DOT's Hugh Colton, is the constrained thinking which is sometimes forced upon those making procurement decisions. It is time, he says, to look again at how we do things. In the November/December 2010 edition of this journal, Pete Goldin interviewed Joseph Sussman, chairman of the US's ITS Program Advisory Committee. Amongst other observations that Sussman made was that, technologically, ITS in the US is 10 years behind that in the world-l
  • Keysight extends C-V2X agreement with Gohigh
    May 16, 2019
    Keysight Technologies is extending its collaboration with Chinese company Gohigh Data Networks Technology to accelerate cellular Vehicle to Everything (C-V2X) technology for connected car applications. Keysight says the collaboration allows manufacturers of long-term evolution vehicles (LTE-V) standard-based chipsets, devices and on-board units and roadside units to validate the radio frequency (RF) performance of the PC5 interface. The PC5 refers to a reference point where user equipment (UE) such as a