Skip to main content

Kistler showcases OIML-certified WIM technology

Kistler will use Intertraffic Amsterdam to highlight a major Weigh-in-Motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).
February 16, 2016 Read time: 2 mins

657 Kistler will use Intertraffic Amsterdam to highlight a major Weigh-in-Motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).

As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles. However, the chain has been missing the last link that would allow the implementation of automatic enforcement, based on vehicle weight data, to introduce toll-by-weight models in a free-flow environment or to obtain legally compliant trading data for invoicing industrial goods loaded on trucks by weight. This growing demand for certified WIM systems accredited according to international standards has been recently met by Kistler’s OIML-certified WIM technology.


Kistler is the first WIM manufacturer to have received the International Organisation of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, the company’s WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, the company says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfil the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class. The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system has a measurement error smaller than ±5%.

For more information on companies in this article

Related Content

  • Measuring alertness to avert drowsy driver incidents
    December 21, 2015
    Falling asleep at the wheel is the primary cause in thousands of deaths on American and other roads, with truck drivers the most at-risk group. David Crawford investigates measures to counter drowsy driving.
  • Free-flow tolling needs classification technology rethink
    February 2, 2012
    The move to all-electronic fee collection should be encouraging tolling authorities to look again at whether their vehicle classification criteria and technologies remain at all appropriate. Bob Lees of Idris Technology writes
  • Do satellites provide a heavenly view of tolling’s future?
    December 16, 2014
    Satellite-based tolling opens up new options for authorities and can be integrated with DSRC systems as David Crawford discovers. As the proud custodian of the European Union (EU)’s longest road network covered by a single (truck) charging scheme – and the only one to include all major roads - Slovakia has become the continent’s poster-nation for the virtues of GNSS/CN (Global Navigation Satellite System/Cellular Network)-based tolling. It is also proved to be a very fast implementer. Speaking at the 2014 I
  • Adopting universal technology platforms for tolling
    July 16, 2012
    Dave Marples of Technolution argues that the continuing development of tolling-specific onboard equipment is leading us up a blind alley. We should, he says, be looking to realise universal platforms with universal application. The near-future automobile contains information systems of a sophistication to rival a jet airliner of only a few years ago, yet is 'piloted' by a considerably less well-trained individual of highly variable mental and physical capacity, and operated in a hostile, unpredictable and p