Skip to main content

Innovative WIM from Kistler

Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML). As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.
July 31, 2015 Read time: 2 mins
Kistler's weigh-in-motion innovation

657 Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).

As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles. However, the chain has been missing the last link that would allow road authorities to implement automatic enforcement based on vehicle weight data or to introduce toll-by-weight models in a free-flow environment. This growing demand for certified WIM systems compliant with international standards has been recently met by Kistler’s OIML-certified WIM technology.

Kistler is the first WIM manufacturer to have received the International Organization of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, Kistler WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, Kistler says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfill the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class. The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system have a measurement error smaller than ±5%.

Related Content

  • January 24, 2012
    Weigh in motion reduces road wear, increases toll revenue
    IRD, Inc's Terry Bergan discusses future applications of weigh in motion technology. The application in recent years of Weigh In Motion (WIM) at tollgates has been driven by recognition of the fact that there is economic value, which can be levied, attached to Heavy Goods Vehicles (HGVs) which haul laden (and are therefore heavy) rather than empty. As wear and damage to road surfaces increases exponentially with weight, the targeting of HGVs in particular makes sense from both the economic and maintenance p
  • June 4, 2025
    Are we nearly there yet? The rise and rise of AI in WiM
    The technology of artificial intelligence has moved on quickly since ITS International last asked the Weigh in Motion community in 2022 - so how is AI used in the WiM sector now? We asked four experts...
  • October 7, 2015
    Intercomp celebrates WIM technology successes
    Intercomp is participating at this ITS World Congress as part of a growing global success underlined by recent installations in Europe, Asia, and multiple US states. The company says it has continued to integrate its strain gauge strip sensor into Weigh-In-Motion (WIM) sites worldwide.
  • September 7, 2014
    Bespoke weigh-in-motion data logger from Kistler
    Kistler is using its booth to highlight to the American market a bespoke weigh-in-motion (WIM) data logger designed to interface with Lineas WIM sensors. The company says this combination allows users to monitor traffic in real time and gather key vehicle data including weight and imbalance, axle loads and spacing, speed and driving behaviour.