Skip to main content

Innovative WIM from Kistler

Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML). As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.
July 31, 2015 Read time: 2 mins
Kistler's weigh-in-motion innovation

657 Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).

As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles. However, the chain has been missing the last link that would allow road authorities to implement automatic enforcement based on vehicle weight data or to introduce toll-by-weight models in a free-flow environment. This growing demand for certified WIM systems compliant with international standards has been recently met by Kistler’s OIML-certified WIM technology.

Kistler is the first WIM manufacturer to have received the International Organization of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, Kistler WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, Kistler says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfill the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class. The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system have a measurement error smaller than ±5%.

For more information on companies in this article

Related Content

  • EVs: Time for a rethink
    December 14, 2021
    Given a growing body of evidence that EVs are not the clean, green machines they are made out to be, Andrew Bunn suggests they can only be part of the puzzle – not the answer to environmental problems
  • Righter shade of pale
    July 24, 2012
    Jon Tarleton, Quixote Transportation Technologies, Inc., talks about developments in mobile weather information gathering Quixote Transportation Technologies, Inc. (QTT) is promoting the greater use of mobile technologies to provide infill between fixed Road Weather Information System (RWIS) infrastructure. It is, the company says, a means of reducing the expense of providing comprehensive, network-wide coverage, particularly in geographic locations where the sheer number of centreline miles causes cost to
  • National truck tolling scheme compensates for transit traffic
    July 13, 2012
    Q-Free's Per Frederik Ecker talks about the Slovak Republic's new truck tolling system, which is intended to compensate for the large amounts of transit traffic which passes through the country. In January this year Q-Free, together with Siemens, was awarded the contract to deliver the new national truck tolling scheme in the Slovak Republic. This will be operated by Slovakia SkyToll on a 13-year concession and Q-Free is supplying the central tolling and enforcement system, together with a three-year servic
  • Kapsch ‘opens the way’ to interoperability
    July 30, 2013
    Richard Turnock, chief technology officer of Kapsch TrafficCom North America explains what advantages its newly-opened TDM protocol can offer as a US-wide standard for tolling interoperability. The electronic tolling industry across the United States is evolving. Historically it was characterised by clusters of interoperability where a motorist may be able to use the same transponder across a large area, such as the 15-State E-ZPass system, or be confined to a single State system. Now, however, the industry