Skip to main content

Innovative WIM from Kistler

Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML). As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.
July 31, 2015 Read time: 2 mins
Kistler's weigh-in-motion innovation

657 Kistler will be at the ITS World Congress with a major weigh-in-motion (WIM) innovation that has already won accreditation from the International Organisation of Metrology (OIML).

As the company points out, to address the ever increasing problem of pavement damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles. However, the chain has been missing the last link that would allow road authorities to implement automatic enforcement based on vehicle weight data or to introduce toll-by-weight models in a free-flow environment. This growing demand for certified WIM systems compliant with international standards has been recently met by Kistler’s OIML-certified WIM technology.

Kistler is the first WIM manufacturer to have received the International Organization of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, Kistler WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, Kistler says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfill the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class. The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system have a measurement error smaller than ±5%.

For more information on companies in this article

Related Content

  • IRD sets up virtual WiM systems in Illinois
    April 4, 2023
    Three new VWiM systems will be installed at two sites on I-294 and I-88
  • Integrating traffic management and tolling technologies
    April 25, 2013
    Jamie Surkont, head of road safety enforcement with Kapsch, outlines the company’s efforts to set up and align new traffic management business units with its more widely recognised tolling expertise The blurring of ITS applications’ edges brought about by systems’ increasing functionalities will ensure that many of the technologies which we have come to rely on for road and traffic management will find it increasingly difficult to exist or operate within tight market verticals. At the same time, systems man
  • The twisting path to enforcement’s future
    June 5, 2014
    Survey reveals some division of views about enforcement’s future as Colin Sowman discovers. Technological advances and legislative changes pose many questions for those involved in road enforcement, ranging from the changing demands of privacy and data protection legislation to the practicalities on multi-speed enforcement. So to get the industry’s views ITS International took soundings on some of these bigger questions. In a world where many vehicles are fitted with GPS linked ‘black box’ telematics system
  • New system to prevent Hazchem and over-height vehicles entering tunnel
    August 20, 2015
    An impending move to free-flow charging prompted a search for automated dangerous goods identification and over-height detection systems at the Thames Crossing to the east of London. Manned toll booths are increasingly being consigned to history by the onslaught of all-electronic charging. However, a secondary function of the traditional manned plazas has been to prevent non-compliant vehicles using the facility or to tell a driver that that they need to use a specific lane or wait for an escort. Automating