Skip to main content

Entropy highlights Azoth platform

Real-time data can forecast passenger movements up to 24 hours ahead
By David Arminas January 17, 2025 Read time: 2 mins
Azoth is designed to provide information for the design, adaptation and regulation of mobility-related services (image: Entropy)

Entropy showcased its Azoth urban mobility prediction platform at CES 2025 in Las Vegas this month.

Azoth analyses real-time data such as vehicle geolocation, weather, trip history and local events to forecast passenger movements up to 24 hours in advance. This transforms fleet management into an exact science, says Entropy.

The solution combines artificial intelligence with data fusion, the process of integrating multiple data sources to produce more consistent, accurate and useful information than that provided by any individual data source. 

The aim is to provide information for the design, adaptation and regulation of mobility-related services. Entropy says that its models are based on multi-source data such as GPS data, sensors, cartography, population knowledge, satellite imagery and meteorology.

The company said Azoth predicts user demand and needs for every recharging station and charging network, enabling proactive management. Forecasting of vehicle and parking space availability within five minutes is 98% accurate, says Entropy. There is a 73% gain in prediction precision, for better fleet management and 92% improvement in operational performance through more accurate demand predictions.

The overall result is fewer trips, meaning a lowering CO₂ emissions.

Entropy, founded in 2019, is the result of four years of research work by Vedecom, based at Versailles Saint-Quentin-en-Yvelines University and one of the French government’s Institutes for Energy Transition. In 2023, Entropy was the winner of the AI for Urban Mobility Challenge organised by the Greater Paris Region.

Related Content

  • August 1, 2023
    Transportation’s electrifying future
    Climbing out of our silos will be vital to create the frameworks and networks needed to decarbonise transport, if we are serious about mitigating climate change, says Colin Sowman
  • April 23, 2025
    Huawei advocates for change
    Achieving technological change also requires a shift in mindset, as Jacky Wang, vice president of Huawei’s Smart Transportation business unit, explains
  • February 26, 2024
    New AI traffic project developed in Hungary, Turkey and Japan
    Medianets Lab's Tralico will be tested on streets of Istanbul in bid to reduce congestion
  • August 10, 2016
    Calculating the cost of stellar solutions
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,