Skip to main content

Entropy highlights Azoth platform

Real-time data can forecast passenger movements up to 24 hours ahead
By David Arminas January 17, 2025 Read time: 2 mins
Azoth is designed to provide information for the design, adaptation and regulation of mobility-related services (image: Entropy)

Entropy showcased its Azoth urban mobility prediction platform at CES 2025 in Las Vegas this month.

Azoth analyses real-time data such as vehicle geolocation, weather, trip history and local events to forecast passenger movements up to 24 hours in advance. This transforms fleet management into an exact science, says Entropy.

The solution combines artificial intelligence with data fusion, the process of integrating multiple data sources to produce more consistent, accurate and useful information than that provided by any individual data source. 

The aim is to provide information for the design, adaptation and regulation of mobility-related services. Entropy says that its models are based on multi-source data such as GPS data, sensors, cartography, population knowledge, satellite imagery and meteorology.

The company said Azoth predicts user demand and needs for every recharging station and charging network, enabling proactive management. Forecasting of vehicle and parking space availability within five minutes is 98% accurate, says Entropy. There is a 73% gain in prediction precision, for better fleet management and 92% improvement in operational performance through more accurate demand predictions.

The overall result is fewer trips, meaning a lowering CO₂ emissions.

Entropy, founded in 2019, is the result of four years of research work by Vedecom, based at Versailles Saint-Quentin-en-Yvelines University and one of the French government’s Institutes for Energy Transition. In 2023, Entropy was the winner of the AI for Urban Mobility Challenge organised by the Greater Paris Region.

Related Content

  • January 24, 2012
    Integrated corridor management aids multi-modal transport planning
    Telvent’s Jorgen Pedersen and Tip Franklin discuss how integrated corridor management can create synergies within a multimodal transportation infrastructure, while promoting modal shift. The mantra ‘We cannot build ourselves out of congestion’ has long been stated and too often ignored. But with the economy in dire straits, funding deficits and pressure to reduce governmental spending, this is now being taken seriously by almost everyone who has an interest in the flow of traffic. By ‘everyone’ we include
  • October 17, 2022
    PTV reveals next year's models
    2023 release sees upgrades to transportation modelling and multimodal simulation software
  • March 30, 2021
    Learning from informal transit networks
    When it comes to public transportation, the Minority World could take lessons in equity from the mobility infrastructure of emerging market cities, says Devin de Vries of WhereIsMyTransport
  • May 31, 2013
    Data goldmines offer rich pickings
    Astronomical is not too grand a term to describe the current rate of growth in transportation-related data. Massive amounts of traffic related information, such as speed, volume, incidents and weather are being generated every second by road operators and users alike. Big data’ derives its name from the sheer amount and complexity of available raw data. Its potential value is starting to emerge among the intelligent transportation systems community. A gold rush is taking place to capture this value, with da