Skip to main content

Entropy highlights Azoth platform

Real-time data can forecast passenger movements up to 24 hours ahead
By David Arminas January 17, 2025 Read time: 2 mins
Azoth is designed to provide information for the design, adaptation and regulation of mobility-related services (image: Entropy)

Entropy showcased its Azoth urban mobility prediction platform at CES 2025 in Las Vegas this month.

Azoth analyses real-time data such as vehicle geolocation, weather, trip history and local events to forecast passenger movements up to 24 hours in advance. This transforms fleet management into an exact science, says Entropy.

The solution combines artificial intelligence with data fusion, the process of integrating multiple data sources to produce more consistent, accurate and useful information than that provided by any individual data source. 

The aim is to provide information for the design, adaptation and regulation of mobility-related services. Entropy says that its models are based on multi-source data such as GPS data, sensors, cartography, population knowledge, satellite imagery and meteorology.

The company said Azoth predicts user demand and needs for every recharging station and charging network, enabling proactive management. Forecasting of vehicle and parking space availability within five minutes is 98% accurate, says Entropy. There is a 73% gain in prediction precision, for better fleet management and 92% improvement in operational performance through more accurate demand predictions.

The overall result is fewer trips, meaning a lowering CO₂ emissions.

Entropy, founded in 2019, is the result of four years of research work by Vedecom, based at Versailles Saint-Quentin-en-Yvelines University and one of the French government’s Institutes for Energy Transition. In 2023, Entropy was the winner of the AI for Urban Mobility Challenge organised by the Greater Paris Region.

Related Content

  • January 20, 2012
    Pioneering sensors collect weather data from moving vehicles
    ITS International contributing editor David Crawford foresees the vehicle as 'sentinel being'
  • January 24, 2024
    TRB 2024 challenge spurs smart transportation innovation
    The Center for Urban Informatics and Progress at UTC, Amazon Web Services, the National Science Foundation, the City of Chattanooga and ITS America sponsored the Transportation Forecasting Competition at TRB 2024: and the challenge threw up some fascinating projects
  • August 23, 2024
    Data is driving force behind TomTom's intelligent traffic management
    The complexities of modern urban life have put unprecedented strain on transportation infrastructure. Traffic congestion, accidents, and inefficient resource allocation are persistent challenges. However, as Frans Keijzer, Bid Manager EMEA and APAC at TomTom Enterprise explains, a powerful tool has emerged to reshape the way we manage our roads: big data.
  • November 23, 2018
    Cubic: predictive analytics is putting fortune tellers out of business
    The rise of machine learning and artificial intelligence means that fortune tellers will soon be out of business. Ed Chavis takes a behind the scenes look at the world of predictive analytics ver since organisations started taking advantage of insights derived from Big Data, data scientists concentrated their efforts on the ability to make correct assumptions about the future. A few years later, with the help of automation, developments in machine learning (ML) and advancements in the application of a