Skip to main content

On the Edge with Verizon’s new real-time V2X platform

Solution allows vehicles to share data with each other, VRUs and infrastructure
June 11, 2025 Read time: 3 mins
Mobile-network V2X tech can help scale existing connected solutions or innovate new technology for road user safety (© Alexhertz | Dreamstime.com)

Verizon Business has commercially launched Edge Transportation Exchange, a mobile-network Vehicle to Everything (V2X) communication platform for connected vehicles, with multiple customers already signed on.

Following a successful 5G Automotive Association (5GAA) joint demonstration, the platform is now being used by the Arizona Commerce Authority, Delaware Department of Transportation, Rutgers University Center for Advanced Infrastructure and Transportation (Rutgers CAIT) and Volkswagen Group of America.

Edge Transportation Exchange allows vehicles to communicate and share data with each other, pedestrians and connected roadway infrastructure such as traffic signals, in near-real time. The 5GAA joint demonstration included use cases such as informing drivers about vulnerable road users, dangerous weather and roadway conditions as well as traffic signal phase and timing at intersections.

Edge also serves as an API-driven platform for collaborative innovation between automakers, technology developers and municipal governments. Each can use the mobile-network V2X technology to scale existing connected solutions or innovate new technology for road-user safety and satisfaction.

Development and collaboration is centralised through the Verizon ThingSpace IoT platform.

“Cars are evolving from mechanical vehicles to software-defined mobile devices with the ability to leverage incredible connected technology,” said Shamik Basu, vice president of strategic connectivity and IoT at Verizon Business.

“Edge Transportation Exchange leverages that technology to give automakers, governments and tech developers a robust platform for building out the cellular-connected future of transportation, with visibility and reliability for all road users top of mind.”

The robust integrated solution combines Verizon’s 5G and LTE mobile networks, Verizon 5G Edge mobile edge compute and geolocation technology enhanced with Verizon Hyper Precise Location. 

It uses a virtual architecture that reduces the need for costly physical roadside radio units, alleviating financial burdens for DoTs and municipal governments.

The data and communication capabilities from these combined technologies and environments contribute to a feature-rich, mobile network-based V2X ecosystem that users can use for near-term applications and long-term innovation at scale.

Economic development organisation Arizona Commerce Authority was first to sign on as a platform partner for Edge, advancing from trial to production. 

It works collaboratively with the University of Arizona, Arizona DoT and Maricopa County DoT, and state and local agencies, to develop new use cases and leverage existing ones - including pedestrian detection and upcoming workzone notifications - to make Arizona roadway users safer and better connected.

Delaware DoT is conducting technical testing across multiple communication technologies and architectures to optimise V2X message delivery. 

Primary use cases being studied include red-light warnings, water-on-road warnings and vulnerable road user alerts to drivers. Meanwhile, VW will explore use cases such as pedestrian awareness and payment applications for expedited tolling.

Rutgers CAIT is deploying Edge at the DataCity Smart Mobility Testing Ground, a collaborative programme with Middlesex County and in partnership with New Jersey DoT. The 4km living laboratory is equipped with self-driving-grade sensing, computing and V2X communication technologies to facilitate the testing of connected and automated vehicle and smart city technologies.

Rutgers CAIT is also using the platform to further develop virtualised cellular messaging architectures for cost-effective support of multiple C/AV applications, including intersection safety, congestion mitigation, queue warning, and incident and workzone management.

The university is also researching school zone safety applications, using Edge Transportation Exchange to help deliver near-real-time alerts to pedestrians and incoming vehicles at intersections with heavy school crossings, improving safety for K-12 students, their families and crossing guards.

Related Content

  • Wejo to explore CV data safety potential 
    April 22, 2021
    Workzone safety event on 28 April includes experts from Google and Indiana DoT
  • Trials of new technologies to counter age-old work zone challenges
    May 19, 2017
    New solutions are being used to improve the management and safety of work zones on roads both big and small, as Jon Masters discovers. The UK government has recently been going to some lengths to paint a picture of a nation embracing a future of digital technology – understandably given the economic concerns arising from exiting the European Union. In December last year, however, the UK National Infrastructure Commission (NIC) put down a somewhat different marker for where the UK is now in terms of mobile c
  • Automakers, safety advocates, ITS community welcome action on V2V technology
    December 14, 2016
    A coalition of US automakers, highway safety advocates and intelligent transportation organizations welcome the release of the Department of Transportation's notice of proposed rulemaking (NPRM) to establish an interoperable platform for vehicle-to-vehicle (V2V) communications in new vehicles to provide safety and mobility benefits. Citing an enormous potential to reduce crashes on US roads, the US Department of Transportation believes the proposed rule that would advance the deployment of connected vehi
  • Ford demonstrates talking vehicles using LTE
    April 25, 2012
    Ford has demonstrated its latest advancements in vehicle-to-vehicle communications at the final CoCarX (Co-operative Cars Extended) research project presentation, further highlighting the viability of improving road safety and traffic management through the use of intelligent vehicles.