Skip to main content

Cognitive Technologies launches 4D Radar for self-driving cars

Cognitive Technologies says its 4D Imaging Radar for self-driving cars carries out vertical scanning without using mechanical components and can detect objects with an accuracy over 97%. The 4D radar is expected to detect the coordinates and speed of the road scene objects as well as their shape during all weather conditions. According to Cognitive, the solution supports SAR (synthetic-aperture radar) technology which is used to build a map of the environment around the vehicle. This technology also all
February 21, 2019 Read time: 2 mins
Cognitive Technologies says its 4D Imaging Radar for self-driving cars carries out vertical scanning without using mechanical components and can detect objects with an accuracy over 97%.


The 4D radar is expected to detect the coordinates and speed of the road scene objects as well as their shape during all weather conditions.

According to Cognitive, the solution supports SAR (synthetic-aperture radar) technology which is used to build a map of the environment around the vehicle. This technology also allows the car to see potholes and curbs.

The radar detects objects at a distance of 300m in a range of azimuth angles greater than 100 degrees and elevation angles up to 20 degrees, the company adds.

An azimuth is the angle formed between a reference direction and a line from the observer to a point of interest.

Also, the product comes with video cameras and cognitive low-level data fusion technology to offer improved computer vision capabilities.

Olga Uskova, president of Cognitive Technologies, says the company intends to produce up to 4.5 million radars per year by 2022.

Related Content

  • Towards intelligent road infrastructure
    October 8, 2021
    A digital transformation is happening in the world today and the result is that Europe’s transport infrastructure, and also the car industry are experiencing revolutionary changes. Jēkabs Krastiņš looks at the challenges and plots the road ahead.
  • Calculating the cost of stellar solutions
    August 10, 2016
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,
  • Growth of ANPR applications for enforcement, tolling and more
    February 1, 2012
    Automatic number plate recognition continues to find new applications beyond the traditional. In coming years, we can expect the application set to grow significantly Moore's Law has seen to it that computer processing power has improved out of all comparison in the 30-plus years since the first working Automatic Number Plate Recognition (ANPR) system was created by the UK's Police Scientific Development Branch. The attendant increases in systems' capabilities have resulted in ANPR being deployed globally
  • Intersection monitoring from video using 3D reconstruction
    March 9, 2016
    Researchers Yuting Yang, Camillo Taylor and Daniel Lee have developed a system to turn surveillance cameras into traffic counters. Traffic information can be collected from existing inexpensive roadside cameras but extracting it often entails manual work or costly commercial software. Against this background the Delaware Valley Regional Planning Commission (DVRPC) was looking for an efficient and user-friendly solution to extract traffic information from videos captured from road intersections.