Skip to main content

Bosch demonstrates automated car capabilities

During the ITS World Congress this week in Melbourne, Bosch Australia has been demonstrating the capabilities of its highly automated driving (HAD) vehicle. Designed and manufactured at Bosch Australia’s Clayton headquarters, the vehicle is a result of the company’s belief that the future of mobility will be connected, electrified and automated.
October 12, 2016 Read time: 2 mins
Carl Liersch of Bosch with the HAD vehicle

During the ITS World Congress this week in Melbourne, 311 Bosch Australia has been demonstrating the capabilities of its highly automated driving (HAD) vehicle.

Designed and manufactured at Bosch Australia’s Clayton headquarters, the vehicle is a result of the company’s belief that the future of mobility will be connected, electrified and automated.

The vehicle includes advanced human machine interface (HMI) technology that adjusts vehicle settings and monitors drivers for distractions.

It also communicates with other vehicles to automatically advise the driver regarding projected dangers such as road works, sudden changes in traffic conditions and unexpected obstacles.

The Victorian Government, through the Transport Accident Commission (TAC) has contributed $1.2 million to Bosch Australia’s automated driving program.

Bosch’s Mark Jackman believes the advent of highly automated driving will help reduce the road toll and bring a myriad of other benefits.

"More than 90% of all crashes are caused by human error, so projects like this are vital for the advancement of road safety,” he said. He predicted the future development of automated driving could follow this program:

Beginning in 2017:
cars will be equipped with systems such as ‘integrated highway assist’, which will allow a car to travel by itself on the highway
By 2018: a ‘highway assist’ system will enable the car to change lanes by itself
By 2020: a ‘highway pilot’ will essentially take over all driving tasks
By 2025: an ‘auto pilot’ system will enable a car to drive from point A to point B without human involvement.

For more information on companies in this article

Related Content

  • Cooperative infrastructure systems waiting for the go ahead
    February 3, 2012
    Despite much research and technological promise, progress towards cooperative infrastructure system deployment is still slow. Here, Robert Cone and John Miles take a considered look at how and when it might come about. From a systems engineering viewpoint it looks logical and inevitable that vehicles should be communicating between themselves and with the road infrastructure. But seen from a business viewpoint the case is not proven.
  • Google in talks with world car makers on autonomous cars
    January 15, 2015
    Google has begun discussions with most of the world's top automakers and has assembled a team of traditional and non-traditional suppliers to speed up efforts to bring self-driving cars to market by 2020, a top Google executive has said. Those manufacturers are said to include General Motors, Ford Motor, Toyota, Daimler and Volkswagen. "We'd be remiss not to talk to ... the biggest auto manufacturers. They've got a lot to offer," Chris Urmson, director of Google's self-driving car project, said in an
  • Electronic toll collection: Change is in the air
    November 7, 2024
    Trends in technology plus users’ comfort in adopting new advances indicate that the environment for a new electronic toll collection architecture is evolving. Hal Worrall considers what this might look like
  • 5G or not 5G?
    April 16, 2019
    Just a few years ago, there was only one solution in terms of communications protocols for delivering vehicle connectivity. Now, road operators and vehicle manufacturers face choices – including a moral choice, perhaps. Jason Barnes looks at the current state of play There is a debate raging in the ITS world over future communications protocols. Asfinag, Austria’s national strategic road operator, has announced it will from 2020 be using ITS-G5 to support cooperative ITS (C-ITS) applications (‘First thin