Skip to main content

Bosch demonstrates automated car capabilities

During the ITS World Congress this week in Melbourne, Bosch Australia has been demonstrating the capabilities of its highly automated driving (HAD) vehicle. Designed and manufactured at Bosch Australia’s Clayton headquarters, the vehicle is a result of the company’s belief that the future of mobility will be connected, electrified and automated.
October 12, 2016 Read time: 2 mins
Carl Liersch of Bosch with the HAD vehicle

During the ITS World Congress this week in Melbourne, 311 Bosch Australia has been demonstrating the capabilities of its highly automated driving (HAD) vehicle.

Designed and manufactured at Bosch Australia’s Clayton headquarters, the vehicle is a result of the company’s belief that the future of mobility will be connected, electrified and automated.

The vehicle includes advanced human machine interface (HMI) technology that adjusts vehicle settings and monitors drivers for distractions.

It also communicates with other vehicles to automatically advise the driver regarding projected dangers such as road works, sudden changes in traffic conditions and unexpected obstacles.

The Victorian Government, through the Transport Accident Commission (TAC) has contributed $1.2 million to Bosch Australia’s automated driving program.

Bosch’s Mark Jackman believes the advent of highly automated driving will help reduce the road toll and bring a myriad of other benefits.

"More than 90% of all crashes are caused by human error, so projects like this are vital for the advancement of road safety,” he said. He predicted the future development of automated driving could follow this program:

Beginning in 2017:
cars will be equipped with systems such as ‘integrated highway assist’, which will allow a car to travel by itself on the highway
By 2018: a ‘highway assist’ system will enable the car to change lanes by itself
By 2020: a ‘highway pilot’ will essentially take over all driving tasks
By 2025: an ‘auto pilot’ system will enable a car to drive from point A to point B without human involvement.

For more information on companies in this article

Related Content

  • Machine vision takes ITS further than the eye can see
    January 5, 2016
    Vitronic’s John Yalda looks at how machine vision has become an integral part of many ITS deployments and why it complements, rather than replaces, ANPR. New and conventional business concepts like online shopping and mail order business are becoming more established in the cultures of fast-growing economies and increasing the demand for flexibility in the freight transportation and logistics industry. Road transport has become the preferred infrastructure for freight forwarding and several studies predict
  • Active traffic management increases safety and capacity
    February 2, 2012
    WSDOT is deploying Active Traffic Management in order to increase safety and capacity on its strategic roads. WSDOT's Patricia Michaud elaborates
  • Data exploits parking potential
    March 11, 2015
    David Crawford parallel parks with innovations in two continents. Surveys of US cities indicate that drivers searching for parking can account for up to 37% of all urban traffic congestion. A 2011 study by IBM of 20 cities around the world found that nearly six out of ten drivers had abandoned their search for a parking space at least once; while motorists generally spent on average 20 minutes looking for a sought-after spot.
  • Study: Daimler, Audi, BMW, GM lead on autonomous vehicles
    October 20, 2015
    A new Leaderboard Report from Navigant Research examines the strategy and execution of 18 original equipment manufacturers (OEMs), including company profiles and rankings, to provide industry participants with an objective assessment of these companies’ relative strengths and weaknesses in the developing autonomous vehicle market. The report, Navigant Research Leaderboard Report: Autonomous Vehicle OEMs, examines the strategy and execution of 18 global vehicle manufacturers that are involved in the emerg