Skip to main content

Bosch demonstrates automated car capabilities

During the ITS World Congress this week in Melbourne, Bosch Australia has been demonstrating the capabilities of its highly automated driving (HAD) vehicle. Designed and manufactured at Bosch Australia’s Clayton headquarters, the vehicle is a result of the company’s belief that the future of mobility will be connected, electrified and automated.
October 12, 2016 Read time: 2 mins
Carl Liersch of Bosch with the HAD vehicle

During the ITS World Congress this week in Melbourne, 311 Bosch Australia has been demonstrating the capabilities of its highly automated driving (HAD) vehicle.

Designed and manufactured at Bosch Australia’s Clayton headquarters, the vehicle is a result of the company’s belief that the future of mobility will be connected, electrified and automated.

The vehicle includes advanced human machine interface (HMI) technology that adjusts vehicle settings and monitors drivers for distractions.

It also communicates with other vehicles to automatically advise the driver regarding projected dangers such as road works, sudden changes in traffic conditions and unexpected obstacles.

The Victorian Government, through the Transport Accident Commission (TAC) has contributed $1.2 million to Bosch Australia’s automated driving program.

Bosch’s Mark Jackman believes the advent of highly automated driving will help reduce the road toll and bring a myriad of other benefits.

"More than 90% of all crashes are caused by human error, so projects like this are vital for the advancement of road safety,” he said. He predicted the future development of automated driving could follow this program:

Beginning in 2017:
cars will be equipped with systems such as ‘integrated highway assist’, which will allow a car to travel by itself on the highway
By 2018: a ‘highway assist’ system will enable the car to change lanes by itself
By 2020: a ‘highway pilot’ will essentially take over all driving tasks
By 2025: an ‘auto pilot’ system will enable a car to drive from point A to point B without human involvement.

Related Content

  • Here to lead vehicle hazard warning pilot in Finland
    July 1, 2015
    Mapping and navigation specialist Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road. Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS)
  • Adaptive cruise control would suppress traffic instability
    March 20, 2014
    Professor Berthold Horn of Massachusetts Institute of Technology believes a modified adaptive cruise control could mitigate phantom traffic jamsthat occur for no apparent reason. The phenomenon of the phantom traffic jam is all too common: they appear for no apparent reason and, having caused frustrating delays for all travelers, evaporate for an equally mystical reason. Phantom traffic jams usually occur on busy highways and often take the form of repeatedly stopping and then accelerating up to near the
  • SNCF uses ITS to make crossings safer
    May 19, 2021
    There are too many deaths where road and rail intersect: Virginie Taillandier, smart level crossing project manager at French rail group SNCF, outlines how ITS communications can help
  • AV/ridesharing mix wins major auto investment
    May 5, 2016
    The US has a new trend in personal mobility and David Crawford takes a closer look. US automaker General Motors and ridesharer Lyft’s announcement of a strategic partnership aimed at delivering, over time, an integrated network of on-demand autonomous as well as conventional vehicles has taken the nation’s car industry from traditional manufacturing to new arenas.