Skip to main content

Winners in electric vehicle batteries

According to market analyst IDTechEx, which tracks the development of 45 electric vehicle categories and not just electric cars, there are now lithium-ion battery options for everything from forklifts and mobility vehicles for the disabled to e-bikes. Indeed, almost all the e-bikes in the West and Japan use them. 8000 forklifts in the USA have fuel cells with lithium-ion batteries though the Toyota Mirai fuel cell car and the Prius hybrid car still use NiMH. Whilst capturing market in micro hybrid cars,
July 13, 2015 Read time: 3 mins
According to market analyst 6582 IDTechEx, which tracks the development of 45 electric vehicle categories and not just electric cars, there are now lithium-ion battery options for everything from forklifts and mobility vehicles for the disabled to e-bikes. Indeed, almost all the e-bikes in the West and Japan use them. 8000 forklifts in the USA have fuel cells with lithium-ion batteries though the Toyota Mirai fuel cell car and the Prius hybrid car still use NiMH.

Whilst capturing market in micro hybrid cars, lead-acid batteries are being squeezed out of other categories of pure and hybrid electric vehicles. Lithium-ion batteries are the norm for the pure electric car market which is up a remarkable 55% in 2014 on 2013. They are also the norm in plug-in vehicles from buses to cars and military vehicles.

The bottom line is that lithium-ion batteries have no serious rivals for the coming decade if we talk percentage market share as outlined in the IDTechEx report Analysis of over 140 Lithium-based Rechargeable Battery Manufacturers: Chemistry, Strategy, Success.

So who is winning with these batteries in EVs? 5445 BYD claims leadership but that appears to be in numbers when MWh is a better metric. Here 598 Panasonic was well ahead again in 2014 with 2,726 MWh followed by AESC at 1,620 then 954 LG Chem 886 MWh and BYD 461MWh, closely followed by 4962 Mitsubishi/GS Yuasa 451 MWh and 1809 Samsung 314 MWh as it gives preference to phones. Of those only BYD and Mitsubishi also make the vehicles. However the tables might turn in the following years as LG Chem became in 2015 the largest manufacturer of automotive battery packs. Indeed, LG Chem is supplying thirteen different global automakers out of the top 20 global brands, including 1959 GM, 278 Ford, 1684 Hyundai, 2453 Renault and this year 2069 Daimler joined his ranks.

Dr Peter Harrop, leader of the EV team at analysts IDTechEx comments, “Profits are another thing of course but we expect some of the leaders to be profitable in the blood bath of now 200 manufacturers of lithium-ion capacitors with chronic over-supply even before the planned Tesla Gigafactory. Many will go to the wall. We observe that, although the lithium iron phosphate (cathode) batteries are made by the largest number of these manufacturers, they are not winning the leadership stakes partly because energy density is key for most EVs. The battery chemistry with largest battery production will be by far NMC in the following years”.

“Lithium titanate is still a minor part of the business though taking market share. 5392 Toshiba for example is marketing them in micro and mild hybrid cars. The term actually refers to the anode and such anodes, giving benefits such as improved cycle life, are made with five different cathode types. For now, good old graphite anodes win but a large number of companies are developing silicon-based anodes for EV batteries. Clearly there is a robust competition with consensus that costs will at least halve in the coming decade further boosting the market. As with production of electric vehicles themselves, the Japanese are winning but the Koreans and Chinese are forces to be reckoned with. The elephant in the room is 1686 Toyota, by far the biggest EV manufacturer in the world and having one of the most impressive patent portfolios and ongoing battery research programs. Another fascinating development this year is XALT of the USA landing a one billion dollar order for lithium-ion batteries for Chinese buses based on a superior anode and cathode”.

For more information on companies in this article

Related Content

  • Flir takeover of Traficon and the role of thermal imaging
    February 28, 2013
    Andy Teich, president of commercial systems at Flir, discusses the growing role of thermal technology in ITS and his company’s latest high-profile acquisition with Jason Barnes. Andy Teich, Flir’s president of commercial systems, doesn’t want to talk about infrared (IR). Instead, he’d prefer, he says, to discuss ‘thermal technology’. It is, he explains, to differentiate between the imaging technologies which his company specialises in and the LED illumination of IR cameras, an altogether different beast. Fl
  • Ficosa shows off new e-mobility development centre
    October 11, 2018
    Spanish firm Ficosa has pulled back the curtain on its new centre for developing electromobility solutions. The €10 million, 1,200-m2 ‘e-mobility hub’ near Barcelona in Spain, currently contains four new labs and will be the location for developing and manufacturing software and hardware solutions for hybrid and electric vehicles, specifically battery-management systems and on-board chargers. It is home to 120 engineers, and the company says it will take on 100 more in 2019, as well as adding a new
  • USDOT announces additional funding for low and no-emission vehicles
    September 28, 2015
    The US Department of Transportation’s Federal Transit Administration (FTA) has announced the availability of US$22.5 million through the latest round of the low or no emission vehicle deployment program (LoNo) that will help deploy the next generation of energy-efficient vehicles nationwide. The funds are intended to encourage adoption of green technologies in transit buses, such as hydrogen fuel cells and electric and hybrid engines. The program focuses on commercialising the cleanest and most energy-ef
  • Engine emissions analyser improves emissions testing capability
    June 1, 2016
    An advanced FTIR analyser installed at Intertek’s engine test facility in Milton Keynes is enabling engineers to improve the quality of their tests on the gaseous components of engine exhaust emissions. The gas analyser manufactured by Gasmet Technologies and installed by their UK subsidiary, Quantitech, measures multiple organic and inorganic components simultaneously from a large library of compounds, enabling Intertek’s engineers to quickly and easily change the measured compounds; to change the fuel