Skip to main content

What happens to an electric car in a frontal crash?

At the Detroit Auto Show 2011, Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).
January 26, 2012 Read time: 3 mins

At the Detroit Auto Show 2011, 609 Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).

"Our tests show it is vital to separate the batteries from the electric car's crumple zones to make it as safe as a conventional car. In Detroit we are the first car maker to show the world what a truly safe electric car looks like after a collision with high-speed impact," says Volvo Cars' president and CEO Stefan Jacoby.

The car on show had a fully charged battery when it was tested at Volvo Cars' crash test laboratory in early December 2010. The crash was a so-called offset collision in which 40 per cent of the front hit a barrier at 40 mph (64 km/h).

"The test produced exactly the results we expected. The C30 Electric offers the very same high safety level as a C30 with a combustion engine. The front deformed and distributed the crash energy as we expected. Both the batteries and the cables that are part of the electric system remained entirely intact after the collision," relates Jan Ivarsson, senior manager Safety Strategy & Requirements at Volvo Cars.

The structure of an electric car differs considerably from that of a conventional car - and the new components pose a number of fresh safety challenges. In order to give the Volvo C30 Electric a range of up to 95 miles (150 km) it is necessary to have a battery pack that weighs about 660 lb (300 kg) and this takes up far more space than a conventional fuel tank. Under the bonnet, the combustion engine has been replaced by a more packaging-efficient and lighter electric motor. What is more, the car has a 400 Volt high-voltage electric system.

"Our far-reaching research emphasises the importance of separating the lithium-ion batteries from the car's crumple zones and the passenger compartment. This is the same safety approach we apply with regard to the fuel tank in a conventional car. Another challenge is to reinforce the crumple zones at the front where the smaller motor occupies less space than usual," says Ivarsson.

In the Volvo C30 Electric the batteries are fitted in the traditional fuel tank position and in the tunnel area. The batteries are robustly encapsulated. Beams and other parts of the car's structure around the battery pack are reinforced. All the cables are shielded for maximum protection.

The crash sensor in the car also controls the fuses - and power is cut in 50 milliseconds in a collision by the same signal that deploys the airbags. The system has several fuses that cut directly if an earth fault is detected, such as a damaged cable coming into contact with the body frame.

In a conventional car, the combustion engine helps distribute the incoming collision forces. In the C30 Electric this task is performed by a reinforced frontal structure that also helps absorb the increased collision energy created as a result of the car's added weight.

For more information on companies in this article

Related Content

  • Adaptive cruise control can mitigate phantom traffic jams, says Ford
    July 10, 2018
    Phantom traffic jams can be minimised through adaptive cruise control (ACC) technology, says Ford. These traffic jams occur when one driver hits the brakes and causes a chain reaction of other drivers tapping their brakes which causes traffic flow to halt. Ford conducted a test alongside Vanderbilt University researchers on a closed test track involving 36 vehicles across three lanes. https://www.youtube.com/watch?v=2GYfXxVn2Oc The motor company says the main causes of phantom jams are human fa
  • Road safety systems on show at ITS World Congress
    January 30, 2012
    A vast array of new products and systems for aiding road safety were displayed at the ITS World Congress in October. David Crawford assesses a selection of safety initiatives exhibited in Orlando. Vital roles for ITS applications in road traffic safety emerge clearly from a new report from the US Transportation Safety Advancement Group. The report has been carried out for the Next Generation 911 What's Next Forum, which is preparing the way for future development of the US national 911 emergency single call
  • Tolling Matters: "We want people to share their experiences and not be judged or silenced"
    May 7, 2024
    Wayne Reed of AtkinsRéalis explains why IBTTA's Open Space sessions have the potential to generate great ideas through meaningful discussion - and to have an impact way beyond a 'talking shop'
  • Low speed AEB technology ‘reduces rear-end crashes’
    May 14, 2015
    The findings of Euro NCAP and ANCAP, the independent safety bodies for Europe and Australasia, on the effectiveness of low speed autonomous emergency braking in real-world rear-end crashes have concluded that low speed autonomous emergency braking (AEB) technology needs widespread fitment for maximum benefits. Published in the online edition of the Accident Analysis & Prevention journal, the publication says that AEB is one of the more promising safety technologies that are becoming increasingly common o