Skip to main content

What happens to an electric car in a frontal crash?

At the Detroit Auto Show 2011, Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).
January 26, 2012 Read time: 3 mins

At the Detroit Auto Show 2011, 609 Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).

"Our tests show it is vital to separate the batteries from the electric car's crumple zones to make it as safe as a conventional car. In Detroit we are the first car maker to show the world what a truly safe electric car looks like after a collision with high-speed impact," says Volvo Cars' president and CEO Stefan Jacoby.

The car on show had a fully charged battery when it was tested at Volvo Cars' crash test laboratory in early December 2010. The crash was a so-called offset collision in which 40 per cent of the front hit a barrier at 40 mph (64 km/h).

"The test produced exactly the results we expected. The C30 Electric offers the very same high safety level as a C30 with a combustion engine. The front deformed and distributed the crash energy as we expected. Both the batteries and the cables that are part of the electric system remained entirely intact after the collision," relates Jan Ivarsson, senior manager Safety Strategy & Requirements at Volvo Cars.

The structure of an electric car differs considerably from that of a conventional car - and the new components pose a number of fresh safety challenges. In order to give the Volvo C30 Electric a range of up to 95 miles (150 km) it is necessary to have a battery pack that weighs about 660 lb (300 kg) and this takes up far more space than a conventional fuel tank. Under the bonnet, the combustion engine has been replaced by a more packaging-efficient and lighter electric motor. What is more, the car has a 400 Volt high-voltage electric system.

"Our far-reaching research emphasises the importance of separating the lithium-ion batteries from the car's crumple zones and the passenger compartment. This is the same safety approach we apply with regard to the fuel tank in a conventional car. Another challenge is to reinforce the crumple zones at the front where the smaller motor occupies less space than usual," says Ivarsson.

In the Volvo C30 Electric the batteries are fitted in the traditional fuel tank position and in the tunnel area. The batteries are robustly encapsulated. Beams and other parts of the car's structure around the battery pack are reinforced. All the cables are shielded for maximum protection.

The crash sensor in the car also controls the fuses - and power is cut in 50 milliseconds in a collision by the same signal that deploys the airbags. The system has several fuses that cut directly if an earth fault is detected, such as a damaged cable coming into contact with the body frame.

In a conventional car, the combustion engine helps distribute the incoming collision forces. In the C30 Electric this task is performed by a reinforced frontal structure that also helps absorb the increased collision energy created as a result of the car's added weight.

For more information on companies in this article

Related Content

  • US transport chief: ‘Google car crash not a surprise’
    March 14, 2016
    The recent accident in California involving a Google autonomous car and a bus “was not a surprise,” according to US transportation secretary Anthony Foxx. No one was hurt in the accident, which happened when Google’s Lexus RX-450H tried to avoid some sandbags placed around a storm drain and blocking its path; the car’s computer was said to be at fault. Speaking at the South by Southwest Interactive festival in Austin, Texas, Secretary Foxx told the BBC: “It's not a surprise that at some point there wo
  • Idaho adds human dimension to winter savings
    September 23, 2014
    Idaho leverages the increased capability and reliability of its road weather sensor network to reduce costs and prevent accidents. Weather-related accidents can form a significant chunk of an authorities’ annual road casualty statistics. While authorities cannot control the weather, the technology exists to monitor the road conditions and react with warnings to motorists and the treatment of icy or snow-covered roads. However, with all capital expenditure now placed under the microscope of public scrutiny,
  • Volvo demonstrates its ingenious self-parking car
    June 21, 2013
    Volvo Car Group has developed what it claims is an ingenious concept for autonomous parking. The concept car finds and parks in a vacant space by itself, without the driver inside. The smart, driverless car also interacts safely and smoothly with other cars and pedestrians in the car park. Vehicle 2 Infrastructure technology informs the driver when the service is available. The driver uses a mobile phone application to activate the autonomous parking system and then leaves the car. The vehicle uses sensors
  • UK council trials first UV powered pathway
    October 21, 2013
    An innovative re-surfacing technology that generates its own energy during the day while enhancing visibility at night is being trialled by Cambridge City Council in the UK. Starpath, developed by Surrey-based Pro-Teq Surfacing, is a liquid-based re-surfacing product that absorbs and stores energy from ambient light (UV rays) during the day, then releases this energy at night, allowing the particles to glow. It has recently been applied to an existing pedestrian and cycle way pathway that runs through h