Skip to main content

What happens to an electric car in a frontal crash?

At the Detroit Auto Show 2011, Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).
January 26, 2012 Read time: 3 mins

At the Detroit Auto Show 2011, 609 Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).

"Our tests show it is vital to separate the batteries from the electric car's crumple zones to make it as safe as a conventional car. In Detroit we are the first car maker to show the world what a truly safe electric car looks like after a collision with high-speed impact," says Volvo Cars' president and CEO Stefan Jacoby.

The car on show had a fully charged battery when it was tested at Volvo Cars' crash test laboratory in early December 2010. The crash was a so-called offset collision in which 40 per cent of the front hit a barrier at 40 mph (64 km/h).

"The test produced exactly the results we expected. The C30 Electric offers the very same high safety level as a C30 with a combustion engine. The front deformed and distributed the crash energy as we expected. Both the batteries and the cables that are part of the electric system remained entirely intact after the collision," relates Jan Ivarsson, senior manager Safety Strategy & Requirements at Volvo Cars.

The structure of an electric car differs considerably from that of a conventional car - and the new components pose a number of fresh safety challenges. In order to give the Volvo C30 Electric a range of up to 95 miles (150 km) it is necessary to have a battery pack that weighs about 660 lb (300 kg) and this takes up far more space than a conventional fuel tank. Under the bonnet, the combustion engine has been replaced by a more packaging-efficient and lighter electric motor. What is more, the car has a 400 Volt high-voltage electric system.

"Our far-reaching research emphasises the importance of separating the lithium-ion batteries from the car's crumple zones and the passenger compartment. This is the same safety approach we apply with regard to the fuel tank in a conventional car. Another challenge is to reinforce the crumple zones at the front where the smaller motor occupies less space than usual," says Ivarsson.

In the Volvo C30 Electric the batteries are fitted in the traditional fuel tank position and in the tunnel area. The batteries are robustly encapsulated. Beams and other parts of the car's structure around the battery pack are reinforced. All the cables are shielded for maximum protection.

The crash sensor in the car also controls the fuses - and power is cut in 50 milliseconds in a collision by the same signal that deploys the airbags. The system has several fuses that cut directly if an earth fault is detected, such as a damaged cable coming into contact with the body frame.

In a conventional car, the combustion engine helps distribute the incoming collision forces. In the C30 Electric this task is performed by a reinforced frontal structure that also helps absorb the increased collision energy created as a result of the car's added weight.

For more information on companies in this article

Related Content

  • Hella showcases solutions to advance autonomous driving
    June 26, 2018
    Hella has launched a multifunctional sensor which aims to enable higher levels of autonomous driving and allow OEMs and drivers the freedom to create more customised vehicles. It comes with three detection functions based on its environmental awareness capabilities and has been exhibited at the North American International Auto show 2018, in Detroit. Called Structural Health and Knock Emission (Shake) sensor, it has been upgraded to recognise structure-borne sound waves generated by contact or knocks on it
  • Daimler and Bosch announce JV
    April 19, 2012
    Daimler and Robert Bosch have signed agreements on the establishment of a 50:50 joint venture (JV) for electric motors. Subject to the approval of the antitrust authoritie, the new company, which is to be set up under the name EM-motive, will develop, produce, and market innovative electric motors for electric vehicles.
  • Volkswagen to step up EV development
    October 16, 2015
    Volkswagen will cut investment plans at its biggest division by US$1.1 billion a year and step up development of electric vehicles (EV), as it battles to cope with the fallout from its cheating of diesel emissions tests, according to Reuters. The German company also said it would speed up cost cutting at the VW division, its largest by revenues, and put only the latest and ‘best environmental technology’ in diesel vehicles.
  • Weathering the elements: how weather affects the network
    July 29, 2013
    Weather-related problems can render cost-cutting counter productive, according to CommScope’s Philip Sorrells. When severe weather conditions make headlines every winter, motorists and travellers seem willing to accept the impact on the trains and roads and yet take for granted that the communications networks will continue uninterrupted. They often appear far more upset that the information system does not give them an update on road conditions, train services or bus arrival times than they are about the a