Skip to main content

What happens to an electric car in a frontal crash?

At the Detroit Auto Show 2011, Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).
January 26, 2012 Read time: 3 mins

At the Detroit Auto Show 2011, 609 Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).

"Our tests show it is vital to separate the batteries from the electric car's crumple zones to make it as safe as a conventional car. In Detroit we are the first car maker to show the world what a truly safe electric car looks like after a collision with high-speed impact," says Volvo Cars' president and CEO Stefan Jacoby.

The car on show had a fully charged battery when it was tested at Volvo Cars' crash test laboratory in early December 2010. The crash was a so-called offset collision in which 40 per cent of the front hit a barrier at 40 mph (64 km/h).

"The test produced exactly the results we expected. The C30 Electric offers the very same high safety level as a C30 with a combustion engine. The front deformed and distributed the crash energy as we expected. Both the batteries and the cables that are part of the electric system remained entirely intact after the collision," relates Jan Ivarsson, senior manager Safety Strategy & Requirements at Volvo Cars.

The structure of an electric car differs considerably from that of a conventional car - and the new components pose a number of fresh safety challenges. In order to give the Volvo C30 Electric a range of up to 95 miles (150 km) it is necessary to have a battery pack that weighs about 660 lb (300 kg) and this takes up far more space than a conventional fuel tank. Under the bonnet, the combustion engine has been replaced by a more packaging-efficient and lighter electric motor. What is more, the car has a 400 Volt high-voltage electric system.

"Our far-reaching research emphasises the importance of separating the lithium-ion batteries from the car's crumple zones and the passenger compartment. This is the same safety approach we apply with regard to the fuel tank in a conventional car. Another challenge is to reinforce the crumple zones at the front where the smaller motor occupies less space than usual," says Ivarsson.

In the Volvo C30 Electric the batteries are fitted in the traditional fuel tank position and in the tunnel area. The batteries are robustly encapsulated. Beams and other parts of the car's structure around the battery pack are reinforced. All the cables are shielded for maximum protection.

The crash sensor in the car also controls the fuses - and power is cut in 50 milliseconds in a collision by the same signal that deploys the airbags. The system has several fuses that cut directly if an earth fault is detected, such as a damaged cable coming into contact with the body frame.

In a conventional car, the combustion engine helps distribute the incoming collision forces. In the C30 Electric this task is performed by a reinforced frontal structure that also helps absorb the increased collision energy created as a result of the car's added weight.

For more information on companies in this article

Related Content

  • NTSB: Uber’s AV in fatal crash ‘had software issues’
    November 6, 2019
    The US National Transportation Safety Board (NTSB) has found that an Uber autonomous vehicle which killed Elaine Herzberg last year had software flaws. NTSB released a report which says the Volvo XC60’s autonomous system software classified the pedestrian as an unknown object and determined that an emergency braking manoeuvre was needed to mitigate the collision. Uber confirmed that emergency braking manoeuvres must be carried out manually and the system is not designed to alert the driver. Data
  • Radar reinforces detection efficiency
    March 16, 2016
    Radar can have distinct advantages in some transport-related situations as Colin Sowman found out during a visit to Navtech Radar. Despite tremendous advances in machine vision techniques, the accuracy and reliability of camera-based detection systems suffer during periods of poor visibility where other technologies may offer an alternative. Radar is one such technology. It too has seen significant development in recent years and according to Navtech Radar, the technology can often fulfil detection and moni
  • Smart mobility on the rise, says ABI Research
    May 10, 2016
    As extreme pollution and congestion in urban areas coupled with limited transportation options continues to challenge major cities across the globe, market intelligence firm ABI Research, predicts an imminent rise in smart electric mobility. Data analysis forecasts global electric vehicle revenue will hit US$58 billion in 2021, more than five times its market value in 2015. "The role of vehicle electrification in urban areas is part of a broader smart mobility model that includes shared vehicles, chargi
  • Drive C2X tests ITS systems in Finland’s demanding weather conditions
    December 17, 2013
    The VTT Technical Research Centre in Finland is involved in an extensive international Drive C2X project that tests and develops intelligent transport solutions, aimed at improving safety and efficiency in road traffic and reducing the carbon footprint of motoring. The project includes large-scale testing of inter-vehicle communication and communication between vehicles and the roadside infrastructure system. The tests are being carried out using cars from Mercedes-Benz, Opel and Volvo in slippery and deman