Skip to main content

VTT launches AV for snow and ice conditions, Finland

VTT Technical Research Centre (VTT) of Finland has launched what it claims to be the first autonomous car (AC) to have successfully driven on a real snow-covered road. It also reached speeds of up to 40 km/h during a trial on the Aurora E8 intelligent road in Muonio.
December 18, 2017 Read time: 2 mins
814 VTT Technical Research Centre (VTT) of Finland has launched what it claims to be the first autonomous car (AC) to have successfully driven on a real snow-covered road. It also reached speeds of up to 40 km/h during a trial on the Aurora E8 intelligent road in Muonio.


Called Martti and based on research from VTT’s AC Marilyn, the vehicle is equipped with cameras, antennas, sensors and three laser sensors that detect the environment ahead. By mid-January, it will also be equipped with communication modules which are designed with the intention of communicating with digital transport infrastructure.

To enhance the car’s capacity to function on slippery road surfaces, VTT will begin changing the wavelengths of the optical components, increasing the resolution of the radar, and building more intelligence into the sensors’ software.

Matti Kutila from VTT’s RobotCar Crew, said: “When in spring 2017 we, the researchers, taught the automated car Marilyn to drive, this autumn it has been teaching us on how to make Martti such that it can get along with its spouse, and follow GPS and positioning information on its route. Martti has been designed for demanding weather conditions and Marilyn shines as the queen of urban areas.

“We already have at our disposal an intelligent roadside unit, capable of feeding local information for the insatiable needs of Martti and Marilyn. This cart dubbed Marsu contains measuring devices for friction data and a communications module serving as a base station. Furthermore, next Spring one of our vehicles can also be spotted in forest environments, when Marilyn and Martti get a new friend capable of tackling all terrains,” Kutila added.

For more information on companies in this article

Related Content

  • Health and care organisation adopt Spark EV AI-based technology
    March 7, 2018
    UK-based health and care organisation Provide has adopted Spark EV’s artificial intelligence-based technology with the intention of removing range anxiety for drivers in its electric vehicle (EV) fleet rollout. The technology is said to enable the cars to complete 20% more journeys between charges. Called Spark, the system collects live driver, vehicle and other data sources through an in-car sensor. It uses cloud-based machine learning algorithms to provide more accurate journey predictions for EVs.
  • AVs could have ‘huge value’ in inner cities
    June 13, 2019
    Autonomous vehicles (AVs) could have value as the mainstay of inner city transport networks in future. “It’s pure speculation, but we are likely to see more segregated road networks,” said Chris Hayhurst, European consulting manager at MathWorks. For example, level 5 (completely driverless) AVs could simply be used to pick up and drop off people in the centre of a town. “In an inner city where there are no conventional cars at all it could have huge value,” he added. Hayhurst spoke to ITS Internat
  • Developments in travel information display systems
    August 1, 2012
    David Crawford looks at recent developments in travel information display systems. It is important to remember that we are investing in Real-Time Passenger Information [RTPI] to increase ridership," says Robert Burke, Managing Director of New Zealand transit tracking technology specialist Connexionz, which has been involved in at-stop and remote passenger information since 1995. "Superior information improves the perception of public transport reliability and gives the passenger more choices and greater con
  • Heavy duty hybrids to go zero-emission in cities, says TNO
    June 5, 2019
    Heavy duty hybrid vehicles in future may need to switch to zero emissions when entering a city - and be competitive in their total cost of ownership. Speaking at this week’s ITS European Congress in Eindhoven, Netherlands, Steven Wilkins, senior research scientist at TNO, discussed the ORCA (optimised real-world cost-competitive modular hybrid architecture for heavy duty vehicles) project’s objectives of matching the total cost of ownership with efficiency. “Connected to that is downsizing the engine