Skip to main content

US university investigates smart car tyres

Researchers at Virginia Tech, Penn State University, and 12 industry partners are collaborating on a US$1.2 million National Science Foundation-funded project to integrate sensors into car tyres, with the aim of providing information on the vehicle’s speed and road conditions. Saied Taheri, an associate professor of mechanical engineering in Virginia Tech’s College of Engineering and the director of the Center for Tire Research (CenTiRe), is the project’s lead investigator. Taheri has been working for
January 15, 2016 Read time: 3 mins
Researchers at 5593 Virginia Tech, Penn State University, and 12 industry partners are collaborating on a US$1.2 million National Science Foundation-funded project to integrate sensors into car tyres, with the aim of providing information on the vehicle’s speed and road conditions.

Saied Taheri, an associate professor of mechanical engineering in Virginia Tech’s College of Engineering and the director of the Center for Tire Research (CenTiRe), is the project’s lead investigator.

Taheri has been working for several years on gathering data from tyres using an attached sensor; the new project will expand on that research by incorporating multiple piezoelectric sensors into each tire through direct deposition techniques. With many more data points available per revolution, researchers can extract systematic information.

The ceramic sensors will gather information about road conditions and the health of the tyre and transmit that information wirelessly to the car’s control systems. The team will develop new manufacturing techniques for direct sensor integration into the tyres.

“That gives us a much broader way of looking at those interactions between the tyre and the road,” Taheri explained. “All of these parameters that we’ve been assessing with one sensor, we will be able to assess much more accurately.”

Piezoelectric sensors convert physical inputs, like changes in pressure, temperature, and acceleration, to electrical signals. In a tyre, those signals could convey information about the friction between the tyre and the road, the car’s acceleration, and the tire’s air pressure and structural integrity.

If this data could be transmitted wirelessly to the car’s computer, the car’s existing control systems could automatically adapt to maximise safety.

The Broadband Wireless Access and Applications Center is collaborating on the project to develop the wireless technology; the Center for Energy Harvesting Materials and Systems is also involved, to come up with a way to use the tyre’s own motion to power the sensors and transmission systems.
 
The team is also investigating printing piezoelectric sensors on the car’s seatbelts, where they could measure the driver’s vital signs and movements, potentially detecting a distracted or ill driver before he causes an accident.

The safety benefits would extend beyond the sensor-enabled vehicle itself: the wireless systems transmitting data from the car’s tires to its computer could share data with other vehicles (V2V) and with the broader communications infrastructure (V2I), allowing additional users to access this information and dramatically increasing the potential impact.

Shashank Priya, a professor of mechanical engineering and the Faculty Director of Sustainable Energy at the Institute for Critical Technology and Applied Science, assembled the project team.

“The interdisciplinary team comprises three National Science Foundation Industry/University Cooperative Research Centers and one Engineering Research Center,” Priya said. “They bring together the right expertise and background to address a comprehensive set of technical barriers and make a fundamental breakthrough in developing intelligent tire systems.”

Related Content

  • May 10, 2017
    3M reflect on why CAVs need lines and signs
    Tammy Meehan and Thomas Hedblom of 3M consider the ongoing development of technology needed to introduce connected and autonomous vehicles. The transportation industry is in the midst of the most dramatic shift since Henry Ford introduced horseless carriages. Already we are seeing the increased use of advanced driver assistance systems (ADAS) which, along with the introduction of autonomous vehicles in the next few decades, will bring profound changes to vehicles and the environment in which they operate.
  • May 16, 2013
    University of Michigan announces new transportation research centre
    The University of Michigan has announced the establishment of the Michigan Mobility Transformation Centre as a partnership with government and industry to dramatically improve the safety, sustainability and accessibility of the ways that people and goods move from place to place. According to Peter Sweatman, director of the U-M Transportation Research Institute (UMTRI) and director of the new centre, emerging technological advances could bring substantial benefits to society.
  • January 19, 2012
    Connected Vehicles test vehicle to vehicle applications
    In the US, the ITS Joint Program Office is about to conduct a series of Driver Clinics intended to gauge public reaction to Connected Vehicle safety technologies and applications. Starting in August, the US Department of Transportation (USDOT) will test Vehicle-to-Vehicle (V2V) applications with everyday drivers in what it describes as 'normal operational scenarios'. These Driver Clinics are being carried out at six locations across the US and together with the subsequent model deployment beginning in 2012,
  • April 16, 2012
    Goodyear innovation could make tyre pumps obsolete
    Goodyear has announced it is developing Air Maintenance Technology (AMT) that will enable tyres to remain inflated at the optimum pressure without the need for any external pumps or electronics. All components of the AMT system, including the miniaturised pump, will be fully contained within the tyre.