Skip to main content

US DoT launches largest-ever road test of connected vehicle crash avoidance technology

Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the University of Michigan campus to launch the second phase of the Safety Pi
August 22, 2012 Read time: 3 mins
Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the 324 US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the 5594 University of Michigan campus to launch the second phase of the Safety Pilot, said to be the largest road test to date of connected vehicle crash avoidance technology.

Conducted by University of Michigan's Transportation Research Institute (UMTRI), the road test, or model deployment, is claimed to be a first-of-its-kind test of connected vehicle technology in the real world. The test cars, trucks and buses, most of which have been supplied by volunteer participants, are equipped with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication devices that will gather extensive data about system operability and its effectiveness at reducing crashes.

According to DoT's 834 National Highway Traffic Safety Administration (NHTSA), V2V safety technology could help drivers avoid or reduce the severity of four out of five unimpaired vehicle crashes. To accomplish this, the model deployment vehicles will send electronic data messages, receive messages from other equipped vehicles, and translate the data into a warning to the driver during specific hazardous traffic scenarios. Such hazards include an impending collision at a blind intersection, a vehicle changing lanes in another vehicle's blind spot, or a rear collision with a vehicle stopped ahead, among others.

"Vehicle-to-vehicle communication has the potential to be the ultimate game-changer in roadway safety - but we need to understand how to apply the technology in an effective way in the real world," said NHTSA Administrator David Strickland. "NHTSA will use the valuable data from the 'model deployment' as it decides if and when these connected vehicle safety technologies should be incorporated into the fleet."

The model deployment is the second phase of DoT's connected vehicle Safety Pilot, a major research initiative managed by NHTSA and the 6426 Research and Innovative Technologies Administration (RITA) Intelligent Transportation Systems Joint Program Office. Earlier this year, DOT released data from a series of driver acceptance clinics conducted during the first phase of the Safety Pilot. The study revealed that an overwhelming majority of drivers (9 out of 10) who have experienced V2V technology have a highly favourable opinion of its safety benefits and would like to have V2V safety features on their personal vehicle.

"Many significant advances in roadway safety resulted from the collaborations between government, industry, and academia," said Gregory D. Winfree, RITA Deputy Administrator. "The deployment today is the culmination of years of cooperative research on forward-thinking technology designed to save lives and prevent injuries on America's roads."

The information collected from both phases of the Safety Pilot, and other key research projects, will be used by NHTSA to determine by 2013 whether to proceed with additional activities involving connected vehicle technology, including possible rulemaking. 

Related Content

  • ITS America: building the infrastructure for V2X
    May 3, 2013
    By 2024, market penetration of factory fit DSRC-equipped vehicles in the US could rise to 30 per cent, according to US Department of Transportation AASHTO Deployment Analysis 2012, enabling widespread data communications services and kick-starting a national DSRC infrastructure. The question is: who will pay for the infrastructure in the first place? In an interview with Steve Bayless, director of telecomms and telematics at ITS America, Telematics Update investigated which key investors will benefit from s
  • Euro NCAP puts autonomous pedestrian detection to the test
    November 11, 2015
    European safety organisation Euro NCAP is introducing a new test that will check how well vehicles autonomously detect and prevent collisions with pedestrians, which it says will make it simpler for consumers and manufacturers to find out which systems work best. According to Euro NCAP, independent analysis of real world crash data in the UK and Germany indicates that the deployment of effective autonomous emergency braking systems on passenger cars could prevent one in five fatal pedestrian collisions.
  • Abu Dhabi seeks safe and efficient multi-modal ITS solutions
    December 17, 2014
    Abu Dhabi’s Department of Transport is planning to roll out its second phase ITS Strategy and Action Plan through to 2019 which will deploy a host of innovative multimodal ITS solutions. The United Arab Emirates (UAE) is continuing to experience rapid growth in both its economy and population and none more so than its capital, Abu Dhabi. To cope with the current expansion, and in anticipation of future growth, the Abu Dhabi Surface Transport Master Plan has been devised by its Department of Transport and th
  • TransWiseway and IBM building China’s largest connected vehicles platform
    June 2, 2014
    IBM is collaborating with Beijing transportation information service systems provider TransWiseway Information Technology to build the largest connected vehicles platform in China that will transform the development of the country’s connected car services industry. The cloud-based platform will use advanced analytics for applications that offer real-time in-vehicle services to mobile devices, such as weather advisories, traffic alerts and alternate route suggestions.