Skip to main content

US DoT launches largest-ever road test of connected vehicle crash avoidance technology

Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the University of Michigan campus to launch the second phase of the Safety Pi
August 22, 2012 Read time: 3 mins
Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the 324 US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the 5594 University of Michigan campus to launch the second phase of the Safety Pilot, said to be the largest road test to date of connected vehicle crash avoidance technology.

Conducted by University of Michigan's Transportation Research Institute (UMTRI), the road test, or model deployment, is claimed to be a first-of-its-kind test of connected vehicle technology in the real world. The test cars, trucks and buses, most of which have been supplied by volunteer participants, are equipped with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication devices that will gather extensive data about system operability and its effectiveness at reducing crashes.

According to DoT's 834 National Highway Traffic Safety Administration (NHTSA), V2V safety technology could help drivers avoid or reduce the severity of four out of five unimpaired vehicle crashes. To accomplish this, the model deployment vehicles will send electronic data messages, receive messages from other equipped vehicles, and translate the data into a warning to the driver during specific hazardous traffic scenarios. Such hazards include an impending collision at a blind intersection, a vehicle changing lanes in another vehicle's blind spot, or a rear collision with a vehicle stopped ahead, among others.

"Vehicle-to-vehicle communication has the potential to be the ultimate game-changer in roadway safety - but we need to understand how to apply the technology in an effective way in the real world," said NHTSA Administrator David Strickland. "NHTSA will use the valuable data from the 'model deployment' as it decides if and when these connected vehicle safety technologies should be incorporated into the fleet."

The model deployment is the second phase of DoT's connected vehicle Safety Pilot, a major research initiative managed by NHTSA and the 6426 Research and Innovative Technologies Administration (RITA) Intelligent Transportation Systems Joint Program Office. Earlier this year, DOT released data from a series of driver acceptance clinics conducted during the first phase of the Safety Pilot. The study revealed that an overwhelming majority of drivers (9 out of 10) who have experienced V2V technology have a highly favourable opinion of its safety benefits and would like to have V2V safety features on their personal vehicle.

"Many significant advances in roadway safety resulted from the collaborations between government, industry, and academia," said Gregory D. Winfree, RITA Deputy Administrator. "The deployment today is the culmination of years of cooperative research on forward-thinking technology designed to save lives and prevent injuries on America's roads."

The information collected from both phases of the Safety Pilot, and other key research projects, will be used by NHTSA to determine by 2013 whether to proceed with additional activities involving connected vehicle technology, including possible rulemaking. 

Related Content

  • Smartphones ‘expected to help connect older vehicles to V2X network’
    September 1, 2015
    A recent report from Navigant Research, Connected Vehicles, examines the market for connected vehicles, with a focus on the key components of vehicle-to-external communications (V2X) communications technology and factors that may influence successful deployment. The study provides an analysis of how these factors, including the cost of hardware, regulations, potential societal benefits, and security and privacy concerns, are projected to affect OEMs, hardware and software suppliers, regulators, and intellig
  • Self-driving vehicles ‘may not improve road safety’
    January 28, 2015
    Self-driving vehicles are expected to improve road safety, improve the mobility of those who currently cannot use conventional vehicles and reduce emissions. However, a new report by researchers at the University of Michigan Transportation Research Institute (UMTRI) reviews some of the safety aspects attributed to autonomous vehicles and indicates that safety is likely to be an issue as long as self-driving cars share the road with conventional vehicles. Report authors Michael Sivak and Brandon Schoe
  • Car to car communications a step closer
    December 14, 2012
    Vehicle manufacturers have targeted 2015 for the first cars to roll off European assembly lines fitted with operational V2X technology. They and their partners in the Car 2 Car Communications Consortium are confident of meeting the target, reports Jon Masters. Around three years from now vehicles should be appearing in showrooms boasting the capability of communicating with each other. Manufacturers will have started fitting the first proprietary car-to-car driver-aid safety devices and deployment of ‘vehic
  • Cohda Wireless MK6 V2X solution certified by US FCC
    January 5, 2024

    Cohda Wireless's MK6 connected vehicle technology solution has been certified by the US Federal Communications Commission (FCC) for cellular Vehicle to Everything (C-V2X).

    FCC last year granted waivers permitting deployment of C-V2X technology in the upper 30 MHz of spectrum in the 5.895-5.925 GHz band.