Skip to main content

University research shows a few self-driving cars can improve traffic flow

The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine
May 15, 2017 Read time: 2 mins
The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by 4963 the University of Illinois at Urbana-Champaign.


Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engineering.

The team conducted field experiments in Tucson, Arizona, in which a single autonomous vehicle circled a track continuously with at least 20 other human-driven cars. Researchers found that by controlling the pace of the autonomous car in the study, they were able to smooth out the traffic flow for all the cars. For the first time, researchers demonstrated experimentally that even a small percentage of such vehicles can have a significant impact on the road, eliminating waves and reducing the total fuel consumption by up to 40 percent. Moreover, the researchers found that conceptually simple and easy to implement control strategies can achieve the goal.

The use of autonomous vehicles to regulate traffic flow is the next innovation in the rapidly evolving science of traffic monitoring and control, Work said. Just as fixed traffic sensors have been replaced by crowd-sourced GPS data in many navigation systems, the use of self-driving cars is poised to replace classical freeway traffic control concepts like variable speed limits. Critical to the success of this innovation is a deeper understanding of the dynamic between these autonomous vehicles and the human drivers on the road.

According to Daniel B. Work, assistant professor and a lead researcher in the study, the experiments show that with as few as five per cent of vehicles being automated and carefully controlled, stop-and-go waves caused by human driving behaviour can be eliminated.

The researchers say the next step will be to study the impact of autonomous vehicles in denser traffic with more freedom granted to the human drivers, such as the ability to change lanes.

For more information on companies in this article

Related Content

  • New study on car scrappage schemes
    April 18, 2012
    Car fleet renewal schemes (cash for clunkers/car scrappage) introduced in the US, France and Germany fell short of their potential to deliver on environmental and safety objectives, according to a new report published by the International Transport Forum at the OECD and the FIA Foundation today.
  • German cars learning US traffic regulations
    September 19, 2014
    Mercedes-Benz is expanding its research activities in the US, now that it has received a licence permitting it to test autonomous vehicles on public roads in California. The company says it now plans to take autonomous driving to a new level in the US, despite the differences between US and German traffic systems, which it says are vast. While motoring in Germany commonly takes place on narrow roads, the roads in the USA are frequently wider and may have more than six or even eight lanes. Traffic lights
  • Variable message signs continue to deliver travel information
    February 2, 2012
    Arguably the 'face' of ITS, variable message signs are far from being a passing solution
  • Continental gestures to a safer driving future
    April 10, 2017
    To improve non-verbal communication between drivers and their vehicles, Continental has devised a range of user-friendly touch gestures for the cockpit, using a combination of gesture interaction and touch screens. This enables drivers to draw specific, defined symbols on the input display to trigger a diverse array of functions and features for rapid access. According to Dr Heinz Abel, head of Cross Product Solutions at Continental’s Instrumentation and Driver HMI business unit, the use of gestures and