Skip to main content

University research shows a few self-driving cars can improve traffic flow

The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine
May 15, 2017 Read time: 2 mins
The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by 4963 the University of Illinois at Urbana-Champaign.


Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engineering.

The team conducted field experiments in Tucson, Arizona, in which a single autonomous vehicle circled a track continuously with at least 20 other human-driven cars. Researchers found that by controlling the pace of the autonomous car in the study, they were able to smooth out the traffic flow for all the cars. For the first time, researchers demonstrated experimentally that even a small percentage of such vehicles can have a significant impact on the road, eliminating waves and reducing the total fuel consumption by up to 40 percent. Moreover, the researchers found that conceptually simple and easy to implement control strategies can achieve the goal.

The use of autonomous vehicles to regulate traffic flow is the next innovation in the rapidly evolving science of traffic monitoring and control, Work said. Just as fixed traffic sensors have been replaced by crowd-sourced GPS data in many navigation systems, the use of self-driving cars is poised to replace classical freeway traffic control concepts like variable speed limits. Critical to the success of this innovation is a deeper understanding of the dynamic between these autonomous vehicles and the human drivers on the road.

According to Daniel B. Work, assistant professor and a lead researcher in the study, the experiments show that with as few as five per cent of vehicles being automated and carefully controlled, stop-and-go waves caused by human driving behaviour can be eliminated.

The researchers say the next step will be to study the impact of autonomous vehicles in denser traffic with more freedom granted to the human drivers, such as the ability to change lanes.

For more information on companies in this article

Related Content

  • Radar effective as detection tool for hard shoulder running
    July 23, 2012
    Navtech Radar's millimetric-wave systems are being researched on the M42 in England to look into how this type of detector can assist in the opening of the hard shoulder as an additional running lane. Here, the company's Stephen Clark talks about the technology being used. In England, the Highways Agency's (the HA, an executive agency of the Department for Transport) Managed Motorways system - formerly called Active Traffic Management - uses electronic signs and signals mounted on gantries to direct drivers
  • Red, yellow, green - and WHITE?!
    July 19, 2024
    What on earth is ‘white phase’? Ali Hajbabaie from North Carolina State University tells Adam Hill why red, yellow and green lights may soon no longer be enough at traffic lights
  • What does 2023 have in store for ITS?
    December 30, 2022
    From VRUs to EVs, from customer experience to connected vehicles, here are some thoughts...
  • Embedded connectivity delivers real time travel information
    February 3, 2012
    Ton Brand describes the GSM Association's Embedded mTelematics programme. As the world's roads become increasingly crowded, consumers and businesses are demanding better real-time information to help them both avoid traffic congestion and make smarter use of public transport. Embedding mobile connectivity directly into vehicles can enable drivers and passengers to see live traffic flows in their localities, as well as the expected arrival time of the next bus, ferry or tram