Skip to main content

University of Birmingham’s sensor wins Intelligent Infrastructure Challenge

University of Birmingham’s road surface temperature sensor which uses infrared thermometry will be adopted on the UK’s road and motorway network following a national award at the Highways UK Intelligent Infrastructure Challenge 2017. The judges at the ceremony believe that deploying the sensor network could have an immediate impact on their ability to better control gritting routines in winter. Developed by Lee Chapman, professor of Climate Resilience at the University, the Wintersense sensors are
November 24, 2017 Read time: 2 mins
University of Birmingham’s road surface temperature sensor which uses infrared thermometry will be adopted on the UK’s road and motorway network following a national award at the Highways UK Intelligent Infrastructure Challenge 2017. The judges at the ceremony believe that deploying the sensor network could have an immediate impact on their ability to better control gritting routines in winter. 

Developed by Lee Chapman, professor of Climate Resilience at the University, the Wintersense sensors are Internet of Things enabled and use low power communications which aim to provide a real-time measurement of road surface temperature that will be used to direct gritting lorries to priority areas.

The panel of judges included representatives from Highways England, Transport Scotland, England’s Economic Heartland and Transport for the North.

During the winter months, highways maintenance companies dispatch fleets of gritting lorries which aim to present or mitigate the impact of black ice formation on motorways and A roads. In harsh winters, the routing of gritting lorries is prioritised to ensure optimal road safety. 

Lee Chapman, said: “The key issue in this prioritisation is having good spatial resolution on observation of road surface conditions.  Our sensors are an order of magnitude cheaper than existing solutions, and light enough to be mounted on any lamp post, gantry or road sign, which means a dense network of sensors can be rapidly deployed along a road network to provide a highly granular picture of road surface conditions.” 

Related Content

  • Researchers devise snow ploughing algorithm
    September 16, 2014
    Canadian researchers Olivier Quirion-Blais, Martin Trépanier and André Langevin have developed an algorithm to determine the most efficient routes for snow ploughs and gritters. Snow plough routing has always been something of a ‘black art’: to direct a fleet of show plough to clear priority roads without having the same road cleared several times while others are left untreated. Increasingly, GPS is being used to track the routes the clearing vehicles have taken but until now it has not been possible to ta
  • Cut freight deliveries – improve Southampton’s air quality
    November 23, 2018
    Taking the pressure off cities’ road networks can have a beneficial effect on the environment. David Crawford looks at a new economic model which seeks to quantify the societal effect of freight traffic in Southampton, one of the UK’s five most polluted cities Cuts of 60% or more in volumes of freight deliveries are being predicted - along with badly-needed improvements in air quality - from a load consolidation scheme currently being introduced in the UK port city of Southampton. The forecasts are based o
  • Smart technology keeps infrastructure operating safely
    August 30, 2013
    US Departments of Transportation (DOTs) are using smart technology to warn civil engineers when something is wrong with the infrastructure, says the American Association of State Highway and Transportation Association (AASHTO). Sensors installed on bridges, in roadways, and on maintenance vehicles are communicating real-time performance and weather data, allowing engineers to solve problems before they occur. "Most people look at a road or a bridge and never realise the technology that today's modern tra
  • University to develop intelligent in-cab lorry routing system
    May 20, 2014
    Technology developed by the UK’s University of Leicester is to play a vital part in a new million-euro transport project of the European Commission’s Competitiveness and Innovation programme of the European Mobile and Mobility Industries Alliance. The SATURN (SATellite applications for URbaN mobility) project, coordinated by the Aerospace Valley in France, is a large-scale demonstrator of innovative solutions for better mobility, less congestion, more safety and security. The university will build and