Skip to main content

University of Birmingham’s sensor wins Intelligent Infrastructure Challenge

University of Birmingham’s road surface temperature sensor which uses infrared thermometry will be adopted on the UK’s road and motorway network following a national award at the Highways UK Intelligent Infrastructure Challenge 2017. The judges at the ceremony believe that deploying the sensor network could have an immediate impact on their ability to better control gritting routines in winter. Developed by Lee Chapman, professor of Climate Resilience at the University, the Wintersense sensors are
November 24, 2017 Read time: 2 mins
University of Birmingham’s road surface temperature sensor which uses infrared thermometry will be adopted on the UK’s road and motorway network following a national award at the Highways UK Intelligent Infrastructure Challenge 2017. The judges at the ceremony believe that deploying the sensor network could have an immediate impact on their ability to better control gritting routines in winter. 

Developed by Lee Chapman, professor of Climate Resilience at the University, the Wintersense sensors are Internet of Things enabled and use low power communications which aim to provide a real-time measurement of road surface temperature that will be used to direct gritting lorries to priority areas.

The panel of judges included representatives from Highways England, Transport Scotland, England’s Economic Heartland and Transport for the North.

During the winter months, highways maintenance companies dispatch fleets of gritting lorries which aim to present or mitigate the impact of black ice formation on motorways and A roads. In harsh winters, the routing of gritting lorries is prioritised to ensure optimal road safety. 

Lee Chapman, said: “The key issue in this prioritisation is having good spatial resolution on observation of road surface conditions.  Our sensors are an order of magnitude cheaper than existing solutions, and light enough to be mounted on any lamp post, gantry or road sign, which means a dense network of sensors can be rapidly deployed along a road network to provide a highly granular picture of road surface conditions.” 

Related Content

  • Here’s HD AV map prepared for 5G
    June 17, 2019
    The emergence of 5G may not be necessary to provide a high-definition map for autonomous driving, says Matt Preyss from Here Technologies. Ben Spencer asks why 5G is a hot topic worldwide, with the potential for faster transfer of information eagerly awaited by those convinced that it will be a game-changer for the ITS industry. High-definition (HD) maps are essential to allow autonomous vehicles (AVs) to understand their environment, and operate safely within it in relation to other road users and p
  • Dynamic messaging has its drawbacks
    December 5, 2018
    Dynamic message signs are a proven means of getting information to drivers on the road – but they have their drawbacks. Robert Gordon looks at the possibilities of expanding DMS capability by bringing that information into the cars themselves Delivery of traffic information to motorists by dynamic message signs (DMS) has proven to be popular and is a principal tool for conveying information developed by the traffic management centre (TMC) to the public. There are, however, limitations in the use of ph
  • Scandinavian cloud-based C-ITS project closer to reality
    February 17, 2015
    Volvo Cars, the Swedish Transport Administration and the Norwegian Public Roads Administration are working together on a project to enable cars to share information about conditions that relate to road friction, such as icy patches, or if another driver in the area has its hazard lights on. The research project is getting closer to real-world implementation; with the technology in place, the testing and validation phase is about to begin. In this phase, Volvo Cars will expand the test fleet 20-fold and broa
  • Traffic lights: There’s a better way ..
    July 9, 2014
    .. say researchers at Massachusetts Institute of Technology (MIT) who have developed a means of computing optimal timings for city stoplights that they say can significantly reduce drivers’ average travel times. Existing software for timing traffic signals has several limitations, says Carolina Osorio, an assistant professor of civil and environmental engineering at MIT and lead author of a forthcoming paper in the journal Transportation Science that describes the new system, based on a study of traffic