Skip to main content

Traction motors for electric vehicles change radically

According to Franco Gonzalez, senior technology analyst, IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for
February 26, 2016 Read time: 3 mins
According to Franco Gonzalez, senior technology analyst, 6582 IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for quad-copters to claw pole torque assist reversing alternators (TARA) for the new 48V mild hybrids that will be in volume production from 2017. Those mild hybrids will now qualify as electric vehicles because they will have pure electric silent take-off like regular ‘strong’ hybrids.

While it is true that an increasing number of traction motors for regular electric vehicles also work in reverse to generate electricity from braking and even when coasting, they are very different from TARAs which typically appear as belt-drive starter generators (BSG) and integrated starter generators (ISG) in 48V mild hybrids appearing in volume from 2017.

Mainstream electric vehicle reversing traction motors generate very infrequently whereas the opposite is true for a TARA. Regular hybrids and pure electric vehicles used hundreds of volts in most cases though there are a few that work at 48V including industrial and leisure runabouts and one supercar announced in 2016.  The new IDTechEx Research report, Mild Hybrid 48V Vehicles 2016-2031, looks at the synergies, opportunities and market potential in 48V systems for mild hybrids and, much less important, pure electric vehicles.

Chairman of IDTechEx, Dr Peter Harrop says, “It is important to look at the whole picture to see what is coming in traction motors for EVs. For instance those chasing efficiency and power to weight ratio may watch energy independent electric vehicles (EIV) because they have the most extreme requirements of all in the light-weighting and efficiency arena.

“Newcastle University in the UK is designing such motors for the Boeing drones that will stay up for five years at a time. On the other hand, we recently interviewed Nuon Solar Team, the winner of the Bridgestone trans-Australia 3000 kilometre solar race, and they claim a remarkable 96 per cent efficiency for the motors they design and use. Few regular electric cars even reach 90 per cent. Another solar team in the Netherlands has made a four seat EIV that has so many solar panels it can not only perform its tasks but donate energy to the grid as well and that claims 97 per cent efficiency for its electric motor.”

Related Content

  • July 26, 2012
    Personal Rapid Transit, clear benefits for European cities
    David Crawford watches the race to get the world's first PRT system up and running. To paraphrase the old joke about buses bunching, you seem to have to wait several decades for a Personal Rapid Transit (PRT) system, and then half a dozen come along together. Currently, in fact, there are well over that number of schemes for driverless electric passenger-carrying 'pod' networks at various stages of planning, design and implementation around the world. Locations range from a straight-off-the-drawing board ne
  • January 26, 2012
    Is GIS modelling the answer to the implications of age?
    Geoff Zeiss of Autodesk talks about the convergence going on between GIS and other software systems which will revolutionise the design and construction of nations' utilities. The issue is that we're getting old. But forget the discovery of body hair in places it never used to be, whether or not to dye, contact lenses versus glasses - in fact, put aside entirely the decision to age gracefully or outrageously; the personal implications pale next to the effects on wider society. Faced with the problem of how
  • May 1, 2012
    Toshiba develops electric-powered bus with short charging time
    Small buses owned by Tokyo's Minato Ward, in Japan, will be retrofitted by with new motors and lithium-ion cells developed by electronics major Toshiba. In fiscal 2013, the Ward aims to start full operations of the electric-powered buses and conduct pilot runs by end-fiscal 2012. The Ward intends to deploy the buses for short journeys in housing locations, as the buses need to be recharged after a trip about 12km in a bid to maintain the battery level higher than 50 per cent. At this level of battery status
  • December 8, 2016
    Student’s graphene battery could cut EV charging times
    Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy