Skip to main content

Telvent to implement light rail priority system in Morocco

In a contract valued at US$3.2 million, Telvent is to implement its SmartMobility Light Rail solution on the new light rail system that will connect the Moroccan cities of Rabat and Salé.
February 2, 2012 Read time: 2 mins

In a contract valued at US$3.2 million, 134 Telvent is to implement its SmartMobility Light Rail solution on the new light rail system that will connect the Moroccan cities of Rabat and Salé. Comprising a total of 32 stations along its 18 kilometre extension, the new light rail system is scheduled to begin operating by 2011.

SmartMobility will enable Rabat authorities to effectively coordinate interaction between the new light rail network and city traffic, with the capability to give priority at any time to light rail over private transportation in cases where it is considered to be suitable. This will help minimise light rail system delays and undue standstills, thereby enhancing city road safety levels.

The system to be installed by Telvent is based on selective light rail detection through simultaneous use of radio frequency and magnetic induction, which will permit the system to determine the point at which the light rail train is approaching an intersection. Once detected, the system will make the decision to give priority to the light rail train on the basis of actual traffic conditions, which the system will have determined through micro-regulation tools for intersection traffic that are based on artificial vision analysis systems.

Specifically, Telvent will develop and implement management software, in addition to traffic regulators and road and light rail signalling, based on LED-type technology, allowing energy savings of up to 70 per cent as against current technology.

Manuel Sanchez, Telvent’s chairman and CEO, comments, “Our solution will help the city of Rabat to coordinate the interaction between light rail and city traffic in an effective manner, delivering an unequivocal enhancement to urban mobility.”

Related Content

  • The weighty problem of truck routing enforcement
    March 17, 2015
    The growing impact of heavy commercial vehicles on urban and interurban highway infrastructures around the world is driving the need for reliable route access restriction and monitoring. The support role of enforcement is proving fertile ground for ITS development. Bridges are especially vulnerable – and critical in terms of travel delays. The US state of Oregon’s Department of Transportation (ODOT) operates what it claims is one of the country’s most aggressive truck route restriction enforcement programme
  • Toll performance exceeds expectations, improves travel times
    January 30, 2012
    Jean Harito, Attica Tollway Operations Authority and Steve Morello, Egis Projects describe how looking to exceed contractual obligations makes good operational and business sense. The Attica Tollway is a modern, 65km, access-controlled urban motorway with three lanes in each direction. It constitutes the ring road around the extensive metropolitan area of the Greek capital, Athens, and forms the backbone of the entire road network in the Attica region. By ensuring freeflow operating conditions, the Attica T
  • Developments in signal head lens technology
    February 3, 2012
    Heads and tails Leading manufacturers of traffic signal systems discuss developments in signal head technology as well as some of the legacy issues which affect future deployments Transparent model of Dambach's ACTROS.line technology, showing the bus electronics in the signal head Cowls could be superseded by the greater use of lens technology
  • Intersection collision avoidance system trial
    January 31, 2012
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.