Skip to main content

Technology overcomes EV range challenges

According to new analysis from Frost and Sullivan, Strategic Analysis of Global Market for Range Extenders, major challenges currently faced by the electric vehicle (EV) revolve around the inability to provide long range in a single charge as well as the lengthy charging times that can vary from thirty minutes to ten hours. This has limited the number of adopters for EVs. Range extender technology overcomes these challenges, strategically positioned to make strong gains in the EV market. Currently, the mark
February 4, 2013 Read time: 3 mins
According to new analysis from Frost & Sullivan, Strategic Analysis of Global Market for Range Extenders, major challenges currently faced by the electric vehicle (EV) revolve around the inability to provide long range in a single charge as well as the lengthy charging times that can vary from thirty minutes to ten hours. This has limited the number of adopters for EVs.

Range extender technology overcomes these challenges, strategically positioned to make strong gains in the EV market. Currently, the market for range extenders is nascent and only one extended range EV (eREV) model is available. However, more than fourteen models are expected to be available by 2018.
 
The report estimates the total market for range extenders to be 329,277 over 329,000 units by 2018. eREVs will be equipped with different applications such as internal combustion engine range extenders, fuel cell range extenders and micro-gas turbine range extenders. Internal combustion range extenders are expected to be the most widely used technology with an estimated market share of 77 per cent globally by 2018.
 
“Range extender technologies overcome the major challenge of range anxiety and extended times taken to charge, by generating onboard electricity with the help of different technologies such as internal combustion engine, fuel cell stack and micro-gas turbine,” explains Frost and Sullivan automotive and transportation research associate Prajyot Sathe. “This is fuelling the trend toward plug-in hybrids and eREVs.”
 
An eREV consumes very little fuel, as the primary function of an internal combustion engine or fuel cell or micro-gas turbine is recharging the battery, rather than powering the wheels. Therefore, the extra miles are added at minimal cost.
 
“The integration of range extenders in EVs will result in more than 50 per cent reduction in emissions and significant fuel savings,” Mr. Sathe adds. “There is a major focus on engine downsizing which will help lower costs and lead to exponential calibration and optimisation complexity, as the same level of detail and features can be retained even though the vehicle is downsized.”
 
The market for range extenders is expected to develop at a rapid rate as major OEMs have models lined up to be launched within the next three years. Moreover, fuel cell vehicles are expected to be commercialised by 2015. Such trends will have a positive ripple effect on the uptake of extender range technologies.

Related Content

  • Breakthrough battery could revolutionise cost, range and safety of electric vehicles
    March 23, 2012
    Envia Systems, based in California, has announced test results that verify the company’s next-generation rechargeable battery has achieved the highest recorded energy density of 400 Watt-hours/kilogram (Wh/kg) for a rechargeable lithium-ion cell. When commercialised, this 400 Wh/kg battery is expected to slash the price of a 500km range electric vehicle by cutting the cost of the battery pack by more than 50 per cent. The testing of Envia’s next-generation lithium-ion battery was performed by the Electroche
  • EVs on a roll
    October 8, 2014
    A recently updated report by IDTechEx, Electric Vehicle Forecasts, Trends and Opportunities 2015-2025, indicates that the global market forecast for all hybrid and pure electric vehicles is expected to exceed US$533 billion in 2025. Sales of the BMW i3 and Tesla Model S pure electric cars are rising rapidly, with Tesla holding back demand because it cannot produce enough for at least a year. Those are premium priced vehicles. The major problem with mainstream pure electric cars is price. However, App
  • CES 2021 | Connecting cities
    March 1, 2021
    Covid-19 forced the Las Vegas Convention Center to close its doors for CES 2021, but the trade show’s online debut suggests the pandemic is helping cities
  • Next-generation fuel cells ready for low-emission electricity production
    November 25, 2015
    The VTT Technical Research Centre of Finland, under the INNO-SOFC project and in collaboration with Convion and Elcogen, is developing a new-generation, long-life fuel cell system offering efficiency higher than that of competing technologies. The project aims to develop new, energy-efficient and commercially viable applications.