Skip to main content

SwRI to launch EssEs consortium

Southwest Research Institute (SwRI) will launch a new cooperative research project focusing on safe, reliable, cost-effective energy storage systems for electric and hybrid-electric vehicle applications. The Energy Storage System Evaluation and Safety (EssEs) consortium is intended to help vehicle manufacturers and battery suppliers develop pre-competitive, detailed cell-level test data on electrochemical storage systems and perform research to advance testing methodologies to evaluate batteries. The four-y
May 21, 2012 Read time: 2 mins
Southwest Research Institute (588 SwRI) will launch a new cooperative research project focusing on safe, reliable, cost-effective energy storage systems for electric and hybrid-electric vehicle applications. The Energy Storage System Evaluation and Safety (EssEs) consortium is intended to help vehicle manufacturers and battery suppliers develop pre-competitive, detailed cell-level test data on electrochemical storage systems and perform research to advance testing methodologies to evaluate batteries. The four-year consortium, renewable annually, is designed to provide transparency in the automotive battery market to advance global development of energy storage systems. The initial EssEs meeting will be held May 24, 2011, at Southwest Research Institute.

“The information gathered through this consortium will be critical to the future of hybrid electric and plug-in hybrid electric vehicles, both in the United States and in the global market place,” said Dr. Bapiraju Surampudi, a principal engineer in SwRI’s Engine, Emissions and Vehicle Research Division who leads the newly formed consortium. Test data produced by the consortium will free up resources of original equipment manufacturers, allowing them to concentrate on product development rather than performing battery cell assessments.

Related Content

  • December 16, 2014
    Dynamic charging boosts electric vehicles’ potential
    With an increasing need to use electric vehicles in city centres to reduce pollution, David Crawford looks at various solutions to power delivery. The UN’s September 2014 Climate Summit has added fresh momentum to the drive to increase urban electric vehicle (EV) takeup. It has launched the Urban Electric Mobility Initiative, which wants to see EVs accounting for 30% of all urban travel by 2030, and make cities worldwide more friendly to their use. Encouragingly, the plan is being well supported by commerci
  • February 17, 2017
    Autonomous driving and emissions regulations fuelling 48v power-net
    The launch of autonomous vehicles and a host of electronic components render the current 12-volts (v) battery nearly unusable, says a new report by Frost & Sullivan, Strategic Analysis of the Global 48v Power-net Market. To meet stringent global emissions regulations and offer a basic semi-autonomous system, original equipment manufacturers (OEMs) must electrify components while offering a bigger source of power. Therefore, OEMs plan to migrate to a 48v power-net and use two voltages. Heavy-duty, power-h
  • June 17, 2019
    Battery bottleneck: EV roll-out at risk
    In order for the take-up of electric vehicles – a key part of the future mobility mix - to grow, we need batteries. And that might prove tricky, reports Graham Anderson Industry and commodities experts fear that the growth in electric vehicles (EVs) could be much slower than predicted due to bottlenecks in global battery market supply chains. “People seem to think that the switch from the internal combustion engine to electric vehicles just means you plug your car in rather than fill it with petrol,” a
  • May 17, 2012
    Future EV owners can make money from the power grid
    In what is being claimed as a landmark research report published by Ricardo and National Grid in the UK, the market potential is demonstrated for an electric plug-in vehicle fleet of the future to provide balancing services to the power grid on a commercial basis, returning value to vehicle owners while improving the carbon efficiency of grid operation.