Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • Governments must look beyond short-term spending of public funds
    February 2, 2012
    Phil Pettitt, Chief Executive of innovITS, the UK's ITS Centre of Excellence, argues that governments need to look beyond the short-term when looking to pump-prime economic recovery with public funds. It seems, in the current economic climate, that a 'good' day is one in which no company is announcing job cuts or going into administration. Consumer demand is down and businesses are retrenching, cutting costs and fretting over the consequences of shrinking opportunities and order books. It has not been this
  • Sice systems future proof Fehmarnbelt Tunnel
    April 4, 2023
    Picking up the electro-mechanical contract for the Fehmarnbelt Tunnel was a milestone, according to David Calero Monteagudo, head of global ITS and tunnel business for Spanish company Sice. David Arminas finds out more
  • New UPS to protect Siemens traffic control systems
    November 12, 2014
    Siemens has teamed up with uninterruptible power supply (UPS) specialist, Harland Simon UPS, which has created a new range of UPS systems for Siemens the company to offer critical protection within key traffic control systems, reducing the chances of accidents and traffic congestion in the event of power failure. The high specification solution is based on the Harland ProtectUPS-T, which can be adapted to meet specific demands that are available in 500W, 1000W and 2000W versions. The system is equipped w
  • Full analysis: Massive US EV infrastructure plan
    February 21, 2023
    The White House has announced a huge financial boost, new standards, and major progress for a made-in-America national network of EV chargers to support the future of US EV charging