Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • Assessing driver behaviour in work zones
    May 31, 2013
    David Crawford looks at moves to increase throughput and safety in work zones.
  • Communication: the future of machine vision
    May 30, 2013
    Jason Barnes asks leading machine vision industry figures what they consider to be the educational barriers to the technology’s increased uptake by the ITS sector. The recent rush by some organisations within the ITS sector to associate themselves with the term ‘machine vision’ underlines just how important the technology has become in a relatively short space of time. However, despite the technology having been applied in certain traffic management applications for some years, there remains a significant s
  • TRL to evaluate road safety performance in the Sultanate of Oman
    December 4, 2012
    The UK’s Transport Research Laboratory (TRL) has been commissioned by the Royal Oman Police (ROP) to undertake a study covering all aspects of road safety within the Sultanate of Oman. TRL’s team of experts will conduct a high level multi-sector assessment of existing road safety activity in the Sultanate. The review will evaluate the Sultanate’s road safety performance, comparing existing activities against best practice across twelve different disciplines including road safety management, safety engineeri
  • Swedish drivers support speed cameras
    March 17, 2014
    In sharp contrast to many other countries drivers in Sweden support speed cameras and the planned expansion of the automated enforcement network. Sweden is embarking on a massive expansion of its speed camera network and is doing so with both a very high level of public acceptance and without its drivers feeling persecuted; a feat the administrations in many other countries would like to emulate. So how did this envious state of affairs come about? Magnus Ferlander director of business development and ma