Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • Cost Benefit: Don’t waste your energy
    October 28, 2021
    There are ways that we can harvest power from the world’s roads – without necessarily building new infrastructure. David Crawford investigates some of these new approaches
  • Engine emissions analyser improves emissions testing capability
    June 1, 2016
    An advanced FTIR analyser installed at Intertek’s engine test facility in Milton Keynes is enabling engineers to improve the quality of their tests on the gaseous components of engine exhaust emissions. The gas analyser manufactured by Gasmet Technologies and installed by their UK subsidiary, Quantitech, measures multiple organic and inorganic components simultaneously from a large library of compounds, enabling Intertek’s engineers to quickly and easily change the measured compounds; to change the fuel
  • Long-range electric vehicles ‘set to gain popularity globally’
    April 22, 2015
    According to new analysis from Frost & Sullivan, the global electric vehicles (EV) market has made huge progress, with more than 55 models now available globally. Currently, over 70 per cent of the models on the market are battery EVs (BEVs) and approximately 25 per cent are plug-in hybrid EVs (PHEVs). Nevertheless, the number of PHEVs is likely to increase over the next three to four years. The market will see greater demand for longer-range vehicles that allow customers to drive up to and past the pure EV
  • Hitachi brings battery-powered tram to Italy 
    February 9, 2021
    The trams can offer high capacity transport through city centres, firm says