Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • January 26, 2012
    What happens to an electric car in a frontal crash?
    At the Detroit Auto Show 2011, Volvo Cars is spotlighting the important issue of electric car safety in an unusual, but distinctive way. On the company's stand there is a Volvo C30 Electric that has undergone a frontal collision test at 40 mph (64 km/h).
  • May 1, 2012
    Toshiba develops electric-powered bus with short charging time
    Small buses owned by Tokyo's Minato Ward, in Japan, will be retrofitted by with new motors and lithium-ion cells developed by electronics major Toshiba. In fiscal 2013, the Ward aims to start full operations of the electric-powered buses and conduct pilot runs by end-fiscal 2012. The Ward intends to deploy the buses for short journeys in housing locations, as the buses need to be recharged after a trip about 12km in a bid to maintain the battery level higher than 50 per cent. At this level of battery status
  • September 13, 2016
    Volvo and KPMG find buses are key to urban air quality
    Buses can play a key role in the battle to improve air quality in towns and cities as David Crawford discovers. A city with a population of half a million would gain about US$12.3 million in annualised societal savings if all its buses ran on electricity instead of diesel. This is the conclusion of a wide-ranging analysis carried out by Swedish bus manufacturer Volvo Group and global business consultants KPMG.
  • April 23, 2012
    Russian researchers to unveil revolutionary fuel cell project
    A state-of-the-art joint project spearheaded by the Tomsk Polytechnic Research University and Icelandic professor, Horsteinn I. Sigfusson, who was awarded the Global Energy International prize in 2007, will be showcased at Russia Day as part of the international exhibition Hannover Messe-2012, which is to be held from 23 to 27 of May, 2012 in Germany.