Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • April 17, 2012
    IBM, Honda, and PG&E enable smarter charging for EVs
    IBM has teamed with American Honda Motor Company and Pacific Gas and Electric Company on a new pilot project that will allow communication between electric vehicles (EVs) and the power grid. This project will demonstrate and test an electric vehicle's ability to receive and respond to charge instructions based on the grid condition and the vehicle's battery state. With visibility into charging patterns, energy providers will have the ability to more effectively manage charging during peak hours and create c
  • August 22, 2014
    Volvo Group developing safety systems at new test track
    AstaZero, the world’s first full-scale test track for active automotive safety located in Borås, Sweden has officially opened. The 2000,000 square meters testing area simulates cities as well as multilane motorways and rural roads with intersections. It is here that the Volvo Group will test and develop future safety solutions for heavy vehicles. The Volvo Group claims its vision is to have no Group vehicles involved in traffic accidents and the Group’s safety experts have studied data from traffic acci
  • March 11, 2015
    Tyres ‘could charge EV batteries’
    Unveiled at the recent Geneva Motor Show, two concept tyres by Goodyear could radically change the role of car tyres in the future according to the company. The first concept, named BHO3, offers the possibility of charging the batteries of electric cars by transforming the heat generated by the rolling tyre into electrical energy. The second concept, Triple Tub, contains three tubes that adjust tyre inflation pressure in response to changing road conditions, delivering new levels of performance and versatil
  • June 29, 2017
    Favourable government initiatives and new business models boost Poland’s EV market
    Poland’s electro-mobility market is ripe for growth, according to research organisation Frost & Sullivan. Favourable government initiatives such as the Electro-mobility Plan and Electro-mobility and Alternative Fuels Act are reshaping local mobility and igniting innovative clean technologies to achieve higher competitiveness and energy optimisation.