Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • March 20, 2015
    Autonomous vehicles are everywhere says report
    A new IDTechEx report, Autonomous Vehicles: Land, Water, Air 2015-2035 claims autonomous vehicles are successful here and now but you are unlikely to meet one because the successes are in the upper atmosphere, open cast mines, nuclear power stations, underwater and in other relatively inaccessible places. It goes on to explains that the primary technology of an autonomous vehicle is that which confers autonomy and the powertrain, which is usually electric. The powertrain and navigation and control technolo
  • December 2, 2016
    Cars reinvented: huge new opportunities and dangers, says IDTechEx
    The new IDTechEx report, Electric Car Technology and Forecasts 2017-2027 finds that the biggest change in cars for one hundred years is now starting. It is driven by totally new requirements and capabilities. They will cause huge new businesses to appear but some giants currently making cars and their parts will spectacularly go bankrupt. Cities will ban private cars but encourage cars as autonomous taxis and rental vehicles. Already 65 per cent of cars in China are bought by businesses. The Japanese wa
  • June 10, 2021
    Robotic Research: harnessing AV potential
    Robotic Research is leading in AV R&D, from work with the US Army to enabling the first automated BRT line in North America: Gordon Feller assesses what the company is doing
  • September 20, 2024
    Kapsch TrafficCom sees the light with its Elumian
    Toll transponder uses all sources of light thanks to Powerfoyle technology from Exeger