Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • December 6, 2017
    Vision technology lifts blinkers from tunnel vision
    Sony’s Jerome Avenel looks at how advances in imaging technology are helping improve safety. On the 24th March 1999, a Belgian truck transporting flour and margarine through the 11.6km Mont Blanc tunnel caught alight when a cigarette stub entered the engine induction snorkel, lighting the paper air filter. The fire left over 30 dead and many more injured. At the time, the Mont Blanc tunnel disaster was the world’s worst tunnel fire.
  • October 26, 2022
    Digital twins help city space race
    As the world becomes more urbanised, there is a need to monitor the likely effects this will have on the way we live, says Jeroen Borst of TNO, the Dutch organisation for applied scientific research
  • September 19, 2017
    New services and equipment helps cities tackle air quality issues
    With poor urban air quality shortening lives and fines being imposed for breaching pollution limits, authorities are seeking ways to clean up their cities. Poor air quality is topping the agenda for city authorities across the globe. In the UK, for example, a report from the Royal Colleges of Physicians and of Paediatrics and Child Health, concluded that poor outdoor air quality shortens the lives of around 40,000 people a year – principally by undermining the health of people with heart and/or lung prob
  • December 9, 2013
    Hot spot detector prevents road tunnel fires
    Sick’s new hot spot detector system proved its worth only one week after being installed by preventing a fire in the Karawanks Tunnel, Austria. A semi-trailer truck with a wheel temperature exceeding 200 degrees centigrade triggered the alarm as it passed the hot spot detector. Closer inspection indicated that in addition to the overheated brake, the vehicle was also travelling with two cracked brake discs. Developed by Sick’s Swiss subsidiary ECTN and based on the Sick LMS511 laser sensor with the T