Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • PTV works with partners to develop transport modelling software for AVs
    January 24, 2019
    PTV, a member of the CoEXist European research project, has announced the development of transport modelling software which it says is ready for automated vehicles (AVs). CoEXist is a three-year project which focuses on the interaction between semi-automated and conventional vehicles in the transition to fully-AV fleets. It is funded under the Horizon 2020 framework programme of the European Commission with a budget of €3.5 million. Four cities are involved: Gothenburg (Sweden), Stuttgart (Germany),
  • When speed compliance becomes a safety issue
    March 29, 2017
    David Crawford finds that softly, softly can be safely, safely when it comes to speed enforcement. Comedians and controversial TV presenters have long made jokes about having to watch the speedometer so closely as they pass speed camera after speed camera that they mow down bus queues. But the joke may have some factual basis according to a study by researchers from the University of Western Australia.
  • Companies depend on automation, AI and machine learning for cyber security
    February 23, 2018
    To defend against cyber attacks, 39% of organisations are reliant on automation, 34% on machine learning and 32% on artificial intelligence (AI), according to the Cisco 2018 annual report conducted on 3,600 chief information security officers. It found that over half of all attacks resulted in financial damages of more than $500,000 (£697,000), including, but not limited to, lost revenue, clients, opportunities, and out-of-pocket costs. The study revealed that adversaries are using Malware sophistication
  • Asecap Days 2025: seizing the opportunities
    May 28, 2025
    Delegates during day one of the two-day 52nd Asecap Days conference in Madrid were left in no doubt the financial challenges that face motorway concessionaires as the transition to different mobility increases in pace...