Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • FIA urges more rigorous vehicle emissions testing
    September 28, 2015
    In light of the VW emissions testing scandal, FIA Region I continues to urge the introduction of a more rigorous testing procedure for vehicle emissions and fuel consumption in the EU. Although vehicles are passing the tests, a growing body of evidence shows that virtually no vehicle, whether diesel or petrol, can comply with emissions levels achieved in testing when in real-world settings. The FIA and its members have consistently supported the introduction of a robust test cycle and real driving emiss
  • Righter shade of pale
    July 24, 2012
    Jon Tarleton, Quixote Transportation Technologies, Inc., talks about developments in mobile weather information gathering Quixote Transportation Technologies, Inc. (QTT) is promoting the greater use of mobile technologies to provide infill between fixed Road Weather Information System (RWIS) infrastructure. It is, the company says, a means of reducing the expense of providing comprehensive, network-wide coverage, particularly in geographic locations where the sheer number of centreline miles causes cost to
  • Managed charging to solve EV demand issue, says TRL
    September 10, 2019
    Managed charging (MC) can shift electric vehicle (EV) charging demand in the UK away from peak times, according to a study led by TRL. MC aims to shift plug-in vehicle (PiV) charging load to times - such as overnight - when other demands are low. TRL found that, after experiencing some form of MC, the vast majority of people would be happy to switch to it. This research, part of TRL’s Vehicles and Energy Integration (CVEI) project, set out to investigate the challenges and opportunities involved in
  • Reducing transport energy use with real time travel information
    January 23, 2012
    The In-Time project is looking at the effect that multi-modal real-time traveller information services can have of reducing transport's energy consumption levels. By Martin Böhm, AustriaTech GmbH. Around the world, significant research and development effort is currently directed towards reducing energy consumption by addressing those areas where the biggest savings can be expected. European studies have shown that the transport sector has the potential to reduce its energy consumption by up to 26 per cent