Skip to main content

Swedish researchers test Li-ion batteries to destruction

Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency. Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pos
October 16, 2015 Read time: 2 mins
Researchers at Sweden’s SP Fire Research are involved in a project to develop safer battery systems for electrified vehicles, together with Atlas Copco, Chalmers University of Technology and Elforsk, with financial support from the Swedish Energy Agency.

Lithium-ion batteries (Li-ion) offer great energy and power densities accompanied with long battery life time. In an abuse situation however, e.g. in case of mechanical deformation or overheating, the flammable electrolyte of the Li-ion battery might pose a risk.

The project includes various destructive tests on commercial Li-ion battery cells to study the cell response in terms of temperature, gas, fire and explosion in electrical abuse tests including overcharge and short circuit tests and exposure to fire.

SP believes that today there are no intrinsically safe Li-ion cells with usable properties. Experience from the consumer market shows that there is a small probability (ppm-level or less) for internal short circuiting in Li-ion cells, potentially resulting in a so called thermal runaway and a battery fire. In a large battery pack, with many cells, the probability of a thermal runaway will increase due to the use of more cells. This leads to an increased risk of a cell safety incident and it is important to minimise its consequences. For example, the cell-to-cell propagation of a thermal runaway in a single cell can be affected by battery pack design.

The tests showed that higher battery electrical charge level (state-of-charge) gives a higher heat release rate (HRR) while the total heat release (THR) is roughly the same for all charge levels. Gas emissions were also measured. The Li-ion cell contains fluorine that can form highly toxic compounds such as hydrogen fluoride (HF) that can be released.

Tests were also carried out using simulation tools to model the heat transfer in a pack of five cells with the aim of predicting the cell-to cell heat spread for a five-cell-pack. Using the Finite-Element software Comsol Multiphysics, the results corroborated those obtained from the experimental tests.

Related Content

  • What's next for traffic management and data collection?
    January 26, 2012
    As the technologies and stakeholders in traffic management evolve, what can we expect to see happening in the coming years? For many, the conversation of the moment is just how, and how far, the newer technologies and services provided principally by the private sector should be allowed to intrude into the realms of traffic management.
  • World Congress celebrates coming of age in Detroit
    September 7, 2014
    This is the 21st ITS World Congress and as Scott Belcher, President and CEO of ITS America, puts the event in its wider context, it’s clear that ITS has come of age
  • AVs and bombs: a sinister possibility
    November 6, 2019
    Vehicle-ramming attacks by terrorists on pedestrians – often involving multiple fatalities - are sobering reminders of how cars and vans can be used for ill. But a recent court case in the UK highlights a sinister use of newer technology
  • Improve and increase mass transit systems to minimise congestion
    January 24, 2012
    Rather looking to solve congestion by spreading the load, perhaps we need to look at concentrating it. Michael L. Sena writes. We humans were made to walk and run at embarrassingly slow speeds by comparison with other, more fleet-footed organisms. The sea is not our natural habitat and we were definitely not designed to fly unaided. Nevertheless, humankind has evolved a method of living during the past century that is dependent on transporting its members over very long distances during relatively short per