Skip to main content

Study reveals benefits of electric Beijing taxi fleet

The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification. As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market accepta
August 6, 2013 Read time: 2 mins
The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the 5594 University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification.

As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market acceptance and in particular relating to consumer travel patterns. Previous research has focused on travel pattern data, assuming that everyone follows the same travel pattern as the aggregated average  However, through the development of information and communications technology, researchers are now able to examine individual travel patterns, particularly among public fleets.

They took routes for 10,375 taxis in Beijing, around 15 per cent of the fleet, and retrieved GPS systems for a week. They also introduced the idea of driving segments, the total distance driven between major resting periods when the vehicle is parked with a predetermined threshold.

Findings suggested that the largest petrol displacement, around 1.1million gallons a year, could be achieved by adopting plug-in electric vehicles with a modest range of around 80 miles based on current battery costs and limited public infrastructure.

It states that while battery range is a major concern for consumers, the study suggests larger batteries decrease electrification rate when the battery cost is higher than US$200/kWh. Only when battery cost drops lower than this level can extended range increase adoption.

In addition, it suggests that greenhouse gas emissions of conventional petrol vehicles are 236.7h CO-eq/km, with up to 36.5 kiloton CO2eq per year saved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km.

For more information on companies in this article

Related Content

  • New US fuel efficiency standards would cost over US$65 billion in lost revenue
    April 17, 2012
    Friday’s proposal by the Obama Administration to increase fuel efficiency standards for cars and light trucks to an average 54.5 miles per gallon (4.32 litres/100 km) between 2017 and 2025 would result in the loss of more than $65 billion in federal funding for state and local highway, bridge and transit improvements, an analysis by the American Road & Transportation Builders Association (ARTBA) shows.
  • Minnesota roads could go electric
    April 26, 2022
    Transportation infrastructure can evolve to support clean vehicle electrification, study finds
  • EVs on a roll
    October 8, 2014
    A recently updated report by IDTechEx, Electric Vehicle Forecasts, Trends and Opportunities 2015-2025, indicates that the global market forecast for all hybrid and pure electric vehicles is expected to exceed US$533 billion in 2025. Sales of the BMW i3 and Tesla Model S pure electric cars are rising rapidly, with Tesla holding back demand because it cannot produce enough for at least a year. Those are premium priced vehicles. The major problem with mainstream pure electric cars is price. However, App
  • Where is tolling tech taking us?
    September 25, 2019
    From DSRC and RFID to GNSS or smartphones – which technology is ‘best’ for tolls, charging and pricing schemes? In the first of two articles, Josef Czako examines the options