Skip to main content

Study reveals benefits of electric Beijing taxi fleet

The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification. As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market accepta
August 6, 2013 Read time: 2 mins
The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the 5594 University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification.

As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market acceptance and in particular relating to consumer travel patterns. Previous research has focused on travel pattern data, assuming that everyone follows the same travel pattern as the aggregated average  However, through the development of information and communications technology, researchers are now able to examine individual travel patterns, particularly among public fleets.

They took routes for 10,375 taxis in Beijing, around 15 per cent of the fleet, and retrieved GPS systems for a week. They also introduced the idea of driving segments, the total distance driven between major resting periods when the vehicle is parked with a predetermined threshold.

Findings suggested that the largest petrol displacement, around 1.1million gallons a year, could be achieved by adopting plug-in electric vehicles with a modest range of around 80 miles based on current battery costs and limited public infrastructure.

It states that while battery range is a major concern for consumers, the study suggests larger batteries decrease electrification rate when the battery cost is higher than US$200/kWh. Only when battery cost drops lower than this level can extended range increase adoption.

In addition, it suggests that greenhouse gas emissions of conventional petrol vehicles are 236.7h CO-eq/km, with up to 36.5 kiloton CO2eq per year saved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km.

For more information on companies in this article

Related Content

  • MaaSLab research assesses Londoners’ attitude to MaaS
    March 28, 2018
    As delegates head for our second MaaS Market Conference, Colin Sowman examines a new report looking at the potential impact of Mobility as a Service on London’s travellers and transport providers. In the run-up to ITS International’s MaaS Market (London) conference, a new independent report examining the travelling public’s appetite for Mobility as a Service (MaaS) has been published. Until now, there has been no real evidence base to evaluate the extent to which MaaS could change travel behaviour in
  • Car safety market worth US$152.59 billion by 2020
    January 20, 2016
    The Markets and Markets report Car Safety Market by System Type (Active Safety & Passive Safety), Safety Regulations by Region (APAC, Europe, North America & Rest of the World), Impact Analysis (Overall Market OEM, Tier I & Consumer) - Trends & Forecast to 2020 estimates the market to be US$93.73 billion in 2015 and projects that it will grow at a CAGR of 10.24 per cent to reach US$152.59 billion by 2020. The market report defines and segments the automotive safety systems market with an impact analysis
  • Moscow pins hopes on V2X
    March 18, 2020
    A new transport strategy is aimed at creating conditions for the introduction of new ITS developments within Moscow – and 5G and V2X are on the agenda
  • A need for order in evolution
    February 27, 2012
    The hit film Jurassic Park took its name from one of the several geological periods or epochs (as they are also known) in which dinosaurs were the dominant land-dwellers.