Skip to main content

Study reveals benefits of electric Beijing taxi fleet

The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification. As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market accepta
August 6, 2013 Read time: 2 mins
The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the 5594 University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification.

As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market acceptance and in particular relating to consumer travel patterns. Previous research has focused on travel pattern data, assuming that everyone follows the same travel pattern as the aggregated average  However, through the development of information and communications technology, researchers are now able to examine individual travel patterns, particularly among public fleets.

They took routes for 10,375 taxis in Beijing, around 15 per cent of the fleet, and retrieved GPS systems for a week. They also introduced the idea of driving segments, the total distance driven between major resting periods when the vehicle is parked with a predetermined threshold.

Findings suggested that the largest petrol displacement, around 1.1million gallons a year, could be achieved by adopting plug-in electric vehicles with a modest range of around 80 miles based on current battery costs and limited public infrastructure.

It states that while battery range is a major concern for consumers, the study suggests larger batteries decrease electrification rate when the battery cost is higher than US$200/kWh. Only when battery cost drops lower than this level can extended range increase adoption.

In addition, it suggests that greenhouse gas emissions of conventional petrol vehicles are 236.7h CO-eq/km, with up to 36.5 kiloton CO2eq per year saved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km.

Related Content

  • TRA 2018: Vienna conference highlights
    June 5, 2018
    Digitalisation of transport systems, the regulation of new technologies and more charging points for electric vehicles in cities were among the talking points at this year’s Transport Research Arena conference. Alan Dron sifts through the highlights in Vienna. More than 3,000 transport sector specialists converged on TRA 2018, where the four-day event’s agenda included scores of topics covering regulation, technology and the effect of the digitalisation of road transport systems. Who should control those
  • Bill Halkias: 'We need a sustainable world'
    April 20, 2021
    In the first of our Tolling Matters interview series, Bill Halkias, MD & CEO of Attica Tollway Operations Authority and president of the International Road Federation, talks to Adam Hill about post-Covid recovery and sustainable mobility
  • Ride-hailing ‘causes 69% more emissions’ than car trips: report
    March 5, 2020
    Ride-hailing trips are producing 69% greater emissions compared to the trips they are replacing, according to the Union of Concerned Scientists (UCS).
  • ITS Australia Awards: finalists revealed
    November 29, 2022
    Cisco, Moovit and Q-Free are among the companies up for 13th ITS Australia Annual Awards