Skip to main content

Study reveals benefits of electric Beijing taxi fleet

The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification. As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market accepta
August 6, 2013 Read time: 2 mins
The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the 5594 University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification.

As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market acceptance and in particular relating to consumer travel patterns. Previous research has focused on travel pattern data, assuming that everyone follows the same travel pattern as the aggregated average  However, through the development of information and communications technology, researchers are now able to examine individual travel patterns, particularly among public fleets.

They took routes for 10,375 taxis in Beijing, around 15 per cent of the fleet, and retrieved GPS systems for a week. They also introduced the idea of driving segments, the total distance driven between major resting periods when the vehicle is parked with a predetermined threshold.

Findings suggested that the largest petrol displacement, around 1.1million gallons a year, could be achieved by adopting plug-in electric vehicles with a modest range of around 80 miles based on current battery costs and limited public infrastructure.

It states that while battery range is a major concern for consumers, the study suggests larger batteries decrease electrification rate when the battery cost is higher than US$200/kWh. Only when battery cost drops lower than this level can extended range increase adoption.

In addition, it suggests that greenhouse gas emissions of conventional petrol vehicles are 236.7h CO-eq/km, with up to 36.5 kiloton CO2eq per year saved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km.

For more information on companies in this article

Related Content

  • Assessing driver behaviour in work zones
    May 31, 2013
    David Crawford looks at moves to increase throughput and safety in work zones.
  • TRL: In-vehicle tech is developing – but the driver isn’t
    August 19, 2019
    The evidence base for distracted driving has failed to keep up with technological developments, argue TRL’s Neale Kinnear and Paul Jackson. New research is urgently needed
  • Battery vehicle ‘now viable for very long distances’
    June 23, 2016
    The Tesla 3 gets nearly double the range of the Nissan Leaf by using nearly double the amount of battery but engineers are using a multitude of work rounds to do better: aerodynamics, light-weighting even including structural electronics where dumb structure is replaced by supercapacitors or solid state batteries. Add more efficient motors and powertrain, says Dr Peter Harrop, chairman of IDTechEx Research in its report Industrial and Commercial Electric Vehicles on Land 2016-2026. He goes on to say that
  • Machine vision takes ITS further than the eye can see
    January 5, 2016
    Vitronic’s John Yalda looks at how machine vision has become an integral part of many ITS deployments and why it complements, rather than replaces, ANPR. New and conventional business concepts like online shopping and mail order business are becoming more established in the cultures of fast-growing economies and increasing the demand for flexibility in the freight transportation and logistics industry. Road transport has become the preferred infrastructure for freight forwarding and several studies predict