Skip to main content

Study reveals benefits of electric Beijing taxi fleet

The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification. As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market accepta
August 6, 2013 Read time: 2 mins
The impact of introducing plug-in electric vehicles to the streets of Beijing, one of the world’s most polluted cities, has been examined by researchers from the 5594 University of Michigan in the ACS journal Environmental Science and Technology. They use big data mining techniques to understand the impact of fleet electrification.

As part of the study, the researchers highlight that while plug-in electric vehicles have developed rapidly in recent years there are still uncertainties with regard to market acceptance and in particular relating to consumer travel patterns. Previous research has focused on travel pattern data, assuming that everyone follows the same travel pattern as the aggregated average  However, through the development of information and communications technology, researchers are now able to examine individual travel patterns, particularly among public fleets.

They took routes for 10,375 taxis in Beijing, around 15 per cent of the fleet, and retrieved GPS systems for a week. They also introduced the idea of driving segments, the total distance driven between major resting periods when the vehicle is parked with a predetermined threshold.

Findings suggested that the largest petrol displacement, around 1.1million gallons a year, could be achieved by adopting plug-in electric vehicles with a modest range of around 80 miles based on current battery costs and limited public infrastructure.

It states that while battery range is a major concern for consumers, the study suggests larger batteries decrease electrification rate when the battery cost is higher than US$200/kWh. Only when battery cost drops lower than this level can extended range increase adoption.

In addition, it suggests that greenhouse gas emissions of conventional petrol vehicles are 236.7h CO-eq/km, with up to 36.5 kiloton CO2eq per year saved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km.

For more information on companies in this article

Related Content

  • Building Europe’s roads for driverless age
    June 17, 2022
    Creating smart, co-operative road transport systems that harness the white heat of technology won’t be easy but a new document shows the way – Andrew Stone does some reading…
  • Paths to cleaner, more secure US transportation solutions – Pew report
    May 18, 2012
    A new report released by the Pew Center on Global Climate Change examines cost-effective solutions to begin to cut US transportation emissions and oil use now and move toward cleaner, alternative fuels. From burning oil, transportation accounts for more than one-fourth of all US GHG emissions. The report, Reducing Greenhouse Gas Emissions from US Transportation, identifies reasonable actions across three fronts – technology, policy, and consumer behaviour – that could deliver up to a 65 per cent reduction i
  • Asking drivers what information they need: radical but effective
    March 19, 2014
    When Texas A&M Transportation Institute was asked to devise a temporary traveller information system for work zones, it started by asking drivers what they need. Robert Brydia explains the thinking, implementation and results. US Interstate 35 (I-35) runs roughly north–south originating in Laredo, Texas and ends 1,500 miles away in Duluth, Minnesota having passed through Oklahoma, Kansas, Missouri and Iowa. Within Texas the I-35 splits into I-35E and I-35W passing through Dallas and Fort Worth respectiv
  • Standardisation roadmap for US electric vehicle deployment released
    April 25, 2012
    The American National Standards Institute (ANSI) has released a Standardisation Roadmap for Electric Vehicles – Version 1.0, developed by the Institute's Electric Vehicles Standards Panel (EVSP). The roadmap assesses the standards, codes, and regulations, as well as conformance and training programmes, needed to facilitate the safe, mass deployment of electric vehicles and charging infrastructure in the United States.