Skip to main content

Student’s graphene battery could cut EV charging times

Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy
December 8, 2016 Read time: 2 mins
Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries.

Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy and be cheaper, stronger and lighter than existing products. This is because graphene is highly conductive, light and strong and far less would be needed.

Josh, who studies in the University’s School of Engineering and Informatics, is currently on placement with electric-motor company YASA. In the spring, he will begin a six-month work experience tour of some of the major automakers, including 1683 Honda, 7998 Jaguar Land Rover, McLaren, 838 Nissan, Peugeot and 1686 Toyota.

He is also working with the University’s business incubator, Sussex Innovation, to develop a prototype and bring his stacked-graphene battery concept to market.

Related Content

  • June 16, 2015
    Nagoya University to develop driverless cars
    Nagoya University has opened a research centre, bringing together academia, industry and government, with the aim of developing automated driving technologies as one of its first key projects. At the Nagoya University National Innovation Complex, researchers from the university’s schools of engineering, medicine, environmental studies and information science will work closely with their counterparts from six private companies, including Toyota Motor Corporation, Panasonic and Fujitsu.
  • January 23, 2018
    Nissan Leaf technology integrated into electric bus trial in Japan
    Nissan Leaf’s technology will be integrated into an electric bus project in Japan with the intention of making zero-emission public transit more widespread and affordable. The project is led by Kumamoto University’s involvement with a Japanese Ministry of Environment project which aims to eliminate C02 and other emissions from larger vehicles. The trial is scheduled to begin next month. Called Yoka Eco Bus, the vehicle will feature three batteries, three electric motors and an inverter from the Nissan
  • April 17, 2012
    Honda launches electric scooter
    Honda is introducing its new EV-neo electric scooter in Europe. The scooter was launched with a demonstration and short test ride at Honda’s innovative Safety Centre, based at the Montesa Honda factory in Barcelona, Spain. Initially introduced as a concept model at the 2009 Tokyo Motorshow, the EV-neo attracted interest and lease sales of the model started in Japan in April 2011. The scooter is primarily aimed at use by delivery services. However, the EV-neo can also provide for recreational use as well as
  • May 31, 2013
    Driverless vehicles will cause changes in society
    Paul Godsmark gives his views on what the advent of autonomous vehicles would mean for the wider society. Further to your article ‘Driver not required…’ in the Jan/Feb edition of ITS International which gave some great background to autonomous road vehicle (ARVs), I feel that the bigger picture is needed to aid understanding. There is a ‘technology freight train’ heading our way that is going to transform our roadways but we don’t seem to be aware of it and, therefore, are in no hurry to react.