Skip to main content

Spark plugs may be replaced by lasers

For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.
May 21, 2012 Read time: 3 mins
For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.

In the past, lasers strong enough to ignite an engine’s air-fuel mixtures were too large to fit in a vehicle’s engine compartment. At this year's Conference on Lasers and Electro Optics (CLEO: 2011) - %$Linker: External 0 0 0 oLinkExternal www.cleoconference.org Cleo Confernece false http://cleoconference.org/ false false%> - being held in Baltimore, USA from 1-6 May, researchers from Japan will describe the first multibeam laser system small enough to screw into an engine's cylinder head.

Equally significant, the new laser system is made from ceramics, and could be produced inexpensively in large volumes, according to one of the presentation's authors, Takunori Taira of Japan's National Institutes of Natural Sciences.

According to Taira, conventional spark plugs pose a barrier to improving fuel economy and reducing emissions of nitrogen oxides (NOx), a key component of smog. If engines ran leaner – burnt more air and less fuel – they would produce significantly smaller NOx emissions.

Spark plugs can ignite leaner fuel mixtures, but only by increasing spark energy. Unfortunately, these high voltages erode spark plug electrodes so fast, the solution is not economical. By contrast, lasers, which ignite the air-fuel mixture with concentrated optical energy, have no electrodes and are not affected.

Lasers also improve efficiency. Conventional spark plugs sit on top of the cylinder and only ignite the air-fuel mixture close to them. The relatively cold metal of nearby electrodes and cylinder walls absorbs heat from the explosion, quenching the flame front just as it starts to expand.

Lasers, Taira explains, can focus their beams directly into the centre of the mixture. Without quenching, the flame front expands more symmetrically and up to three times faster than those produced by spark plugs.

Equally important, he says, lasers inject their energy within nanoseconds, compared with milliseconds for spark plugs. “Timing – quick combustion – is very important. The more precise the timing, the more efficient the combustion and the better the fuel economy,” he says.

Lasers promise less pollution and greater fuel efficiency, but making small, powerful lasers has, until now, proven hard. Taira’s team built its laser from two yttrium-aluminum-gallium (YAG) segments, one doped with neodymium, the other with chromium. They bonded the two sections together to form a powerful laser only 9 millimeters in diameter and 11 millimeters long (a bit less than half an inch).

The composite generates two laser beams that can ignite fuel in two separate locations at the same time. This would produce a flame wall that grows faster and more uniformly than one lit by a single laser.
The laser is not strong enough to light the leanest fuel mixtures with a single pulse. By using several 800-picosecond-long pulses, however, they can inject enough energy to ignite the mixture completely.

A commercial automotive engine will require 60 Hz (or pulse trains per second), Taira says. He has already tested the new dual-beam laser at 100 Hz. The team is also at work on a three-beam laser that will enable even faster and more uniform combustion.

The laser-ignition system, although highly promising, is not yet being installed into actual automobiles made in a factory. Taira’s team is, however, working with a large spark-plug company and with 4306 Denso Corporation, a member of the 1686 Toyota Group. This work is supported by the Japan Science and Technical Agency (JST).

For more information on companies in this article

Related Content

  • New technologies enable increased collaboration, cooperation
    July 17, 2012
    The continued expansion of IP camera networks increases the availability of useful information. At the same time, the opportunity exists to increase inter-agency collaboration. This makes information management all the more necessary in the control room environment. But the transportation sector could do a lot to help itself by gaining a better idea up front of what and how it wants to do things, says Electrosonic's Karl Johnson.
  • New ANPR solutions overcome variables
    May 18, 2018
    The sheer range of variables makes it difficult to find a single algorithm to ensure a 100% standard of ANPR. David Crawford investigates new processing technology. Automatic number plate recognition (ANPR), using optical character recognition and image-processing to identify vehicles, plays key roles in traffic monitoring and law enforcement, access and parking control, electronic toll collection, vehicle security and crime deterrence. Overall, system performance is well rated, with high levels of
  • ANPR - cost-efficient traffic management, enforcement and more
    January 23, 2012
    Geoff Collins of Vysionics Intelligent Traffic Solutions talks about the near-term prospects of ANPR. The continued absence of a champion for its cause is preventing digital enforcement technology from delivering the true levels of cost-effectiveness of which it is capable, according to Geoff Collins, sales and marketing director of ANPR specialist Vysionics Intelligent Traffic Solutions.
  • GE and Deutsche Bahn partnership to optimise rail operations
    November 6, 2015
    GE and Deutsche Bahn Energie (DB Energie) are partnering to optimise Deutsche Bahn’s rail network’s power supply. Working with DB Energie, GE Energy Management will provide the technology and expertise that will couple energy fed from the utility grid to the rail grid, ensuring a more efficient and constant power supply. The solution ensures efficient power conversion and high power quality, optimising rail system operations. Scheduled for delivery between 2017 and 2018, the converter station built by G