Skip to main content

Spark plugs may be replaced by lasers

For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.
May 21, 2012 Read time: 3 mins
For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.

In the past, lasers strong enough to ignite an engine’s air-fuel mixtures were too large to fit in a vehicle’s engine compartment. At this year's Conference on Lasers and Electro Optics (CLEO: 2011) - %$Linker: External 0 0 0 oLinkExternal www.cleoconference.org Cleo Confernece false http://cleoconference.org/ false false%> - being held in Baltimore, USA from 1-6 May, researchers from Japan will describe the first multibeam laser system small enough to screw into an engine's cylinder head.

Equally significant, the new laser system is made from ceramics, and could be produced inexpensively in large volumes, according to one of the presentation's authors, Takunori Taira of Japan's National Institutes of Natural Sciences.

According to Taira, conventional spark plugs pose a barrier to improving fuel economy and reducing emissions of nitrogen oxides (NOx), a key component of smog. If engines ran leaner – burnt more air and less fuel – they would produce significantly smaller NOx emissions.

Spark plugs can ignite leaner fuel mixtures, but only by increasing spark energy. Unfortunately, these high voltages erode spark plug electrodes so fast, the solution is not economical. By contrast, lasers, which ignite the air-fuel mixture with concentrated optical energy, have no electrodes and are not affected.

Lasers also improve efficiency. Conventional spark plugs sit on top of the cylinder and only ignite the air-fuel mixture close to them. The relatively cold metal of nearby electrodes and cylinder walls absorbs heat from the explosion, quenching the flame front just as it starts to expand.

Lasers, Taira explains, can focus their beams directly into the centre of the mixture. Without quenching, the flame front expands more symmetrically and up to three times faster than those produced by spark plugs.

Equally important, he says, lasers inject their energy within nanoseconds, compared with milliseconds for spark plugs. “Timing – quick combustion – is very important. The more precise the timing, the more efficient the combustion and the better the fuel economy,” he says.

Lasers promise less pollution and greater fuel efficiency, but making small, powerful lasers has, until now, proven hard. Taira’s team built its laser from two yttrium-aluminum-gallium (YAG) segments, one doped with neodymium, the other with chromium. They bonded the two sections together to form a powerful laser only 9 millimeters in diameter and 11 millimeters long (a bit less than half an inch).

The composite generates two laser beams that can ignite fuel in two separate locations at the same time. This would produce a flame wall that grows faster and more uniformly than one lit by a single laser.
The laser is not strong enough to light the leanest fuel mixtures with a single pulse. By using several 800-picosecond-long pulses, however, they can inject enough energy to ignite the mixture completely.

A commercial automotive engine will require 60 Hz (or pulse trains per second), Taira says. He has already tested the new dual-beam laser at 100 Hz. The team is also at work on a three-beam laser that will enable even faster and more uniform combustion.

The laser-ignition system, although highly promising, is not yet being installed into actual automobiles made in a factory. Taira’s team is, however, working with a large spark-plug company and with 4306 Denso Corporation, a member of the 1686 Toyota Group. This work is supported by the Japan Science and Technical Agency (JST).

For more information on companies in this article

Related Content

  • University of Michigan launches big data initiative
    September 9, 2015
    The University of Michigan (U-M) plans to invest US$100 million over the next five years in a new data science initiative aimed at working with big data sets that can further research into such things as driverless cars, medicine and climate change. The money will pay for 35 new faculty members to be hired over the next four years, support interdisciplinary data-related research initiatives and foster new methodological approaches to big data, as well as enabling the university to expand its research com
  • Plug-and-play anti-collision technologies for everyone
    March 6, 2014
    With an eye on the autonomous vehicle market, Soterea, a new high-tech firm in New Jersey, US, is developing plug-and-play anti-collision technologies that can make new and used vehicles safer, thereby helping to further evolve the critical element necessary to make driverless vehicles commercially viable. Soterea is the brainchild of two transportation technology experts, Eva Lerner-Lam and Alain L Kornhauser, each with more than four decades of experience in developing next generation technologies for
  • Lidar lets planners see big picture in Chattanooga
    April 14, 2025
    The city of Chattanooga, Tennessee, is attempting to make its streets safer by using the largest deployment of Lidar-based traffic detection in the US. Adam Hill reports…
  • ITS can only progress at the speed of public acceptance
    May 24, 2013
    The ITS sector is one of the younger and more dynamic industries in the economy and I am lucky enough to take the helm of ITS International at a point where the industry is in one of its most interesting phases. The technology is both established enough to show proven results and yet young enough to not fully know what the end game will be. It does not have the uniformity usually seen in older industries, while at the same time the bene ts are there – even if they are not always immediately evident to poli